GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal for ImmunoTherapy of Cancer, BMJ, Vol. 4, No. S1 ( 2016-11)
    Type of Medium: Online Resource
    ISSN: 2051-1426
    Language: English
    Publisher: BMJ
    Publication Date: 2016
    detail.hit.zdb_id: 2719863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 132, No. 8 ( 2018-08-23), p. 804-814
    Abstract: The PSI of manufactured CAR T cells was associated with clinical response and toxicities. Monitoring CAR T-cell polyfunctionality as a key product attribute may complement other characteristics including T-cell proliferation.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 35, No. 16 ( 2017-06-01), p. 1803-1813
    Abstract: T cells genetically modified to express chimeric antigen receptors (CARs) targeting CD19 (CAR-19) have potent activity against acute lymphoblastic leukemia, but fewer results supporting treatment of lymphoma with CAR-19 T cells have been published. Patients with lymphoma that is chemotherapy refractory or relapsed after autologous stem-cell transplantation have a grim prognosis, and new treatments for these patients are clearly needed. Chemotherapy administered before adoptive T-cell transfer has been shown to enhance the antimalignancy activity of adoptively transferred T cells. Patients and Methods We treated 22 patients with advanced-stage lymphoma in a clinical trial of CAR-19 T cells preceded by low-dose chemotherapy. Nineteen patients had diffuse large B-cell lymphoma, two patients had follicular lymphoma, and one patient had mantle cell lymphoma. Patients received a single dose of CAR-19 T cells 2 days after a low-dose chemotherapy conditioning regimen of cyclophosphamide plus fludarabine. Results The overall remission rate was 73% with 55% complete remissions and 18% partial remissions. Eleven of 12 complete remissions are ongoing. Fifty-five percent of patients had grade 3 or 4 neurologic toxicities that completely resolved. The low-dose chemotherapy conditioning regimen depleted blood lymphocytes and increased serum interleukin-15 (IL-15). Patients who achieved a remission had a median peak blood CAR + cell level of 98/μL and those who did not achieve a remission had a median peak blood CAR + cell level of 15/μL ( P = .027). High serum IL-15 levels were associated with high peak blood CAR + cell levels ( P = .001) and remissions of lymphoma ( P 〈 .001). Conclusion CAR-19 T cells preceded by low-dose chemotherapy induced remission of advanced-stage lymphoma, and high serum IL-15 levels were associated with the effectiveness of this treatment regimen. CAR-19 T cells will likely become an important treatment for patients with relapsed lymphoma.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2017
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Molecular Therapy, Elsevier BV, Vol. 25, No. 10 ( 2017-10), p. 2245-2253
    Type of Medium: Online Resource
    ISSN: 1525-0016
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    detail.hit.zdb_id: 2001818-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 2990-2990
    Abstract: Introduction: Autologous anti-CD19 CAR T cells have shown promising clinical efficacy in B cell malignancies, with T cell expansion and blood levels for IL-15, IL-10 and Granzyme B as correlates of objective response and toxicity (Kochenderfer et al. J Clin Oncol 2016; 34:LBA3010). It is unclear, however, which key immune programs in CAR T cells impact their in vivo expansion and clinical outcome. We evaluated in detail the functionality of anti-CD19 CAR T cells by using single-cell proteomics analysis (Lu et al. PNAS 2015;113:607-615). We explored how the polyfunctionality of pre-infusion CAR T cell products, post-stimulation with the CD19 antigen in vitro, associated with CAR T cell expansion in vivo and objective response. Methods: Product T cells were separated into CD4+ or CD8+ T cell subsets using microbeads. CD4+ or CD8+ fractions were then co-cultured with CD19-K562 targets or NGFR-K562 control cells, at a 1:2 ratio for 20 hrs. Single cells were then analyzed using a 32-plex panel of secreted cytokines, chemokines, and cytotoxic molecules. Specifically, T cells were loaded onto a single-cell barcode chip capable of assaying 32 secreted proteins/cell. The polyfunctional profile and strength (pSI) of each sample was determined (Ma et al. Cancer Discov 2013;3:418-429) and analyzed relative to in vivo expansion of the CAR T cells and patient response to the CAR T cell therapy. CAR T cell expansion in blood was measured by quantitative PCR. Results: Single-cell pSI of patient CAR T cells showed a statistically significant association (p = 0.011) with objective response (complete or partial response) to the therapy. While product pSI showed variability across patients, the median pSI was 2+ times higher for responders versus non-responders. The polyfunctional profiles for both CD4+ and CD8+ cells were dominated by effector molecules, stimulatory cytokines and chemokines. Polyfunctional CD4+ and CD8+ subsets with IFN-γ, IL-8 and/or MIP-1α correlated best with patient outcome, with CD8+ T cells showing co-expression of Granzyme B, and CD4+ T cells also comprising IL-17A+IL8+ and IL5+IL8+ subsets. While CAR expansion in vivo also correlated with objective response (p = 0.032), the association between product pSI and CAR cell expansion in vivo did not reach statistical significance (p = 0.079), suggesting that they bring independent contributions to predicting objective response. In support of that, a composite index integrating pSI and CAR T cell expansion in vivo associated best with clinical response (p = 0.005). Conclusion: Polyfunctionality of CAR T cells, in conjunction with their expansion in vivo, correlates with clinical outcome in an anti-CD19 CAR T cell clinical trial. Single-cell multiplexed proteomics measurements may provide powerful insight into the clinical performance of CAR T cell products. [J.R. and P.P. contributed equally to this study.] Citation Format: John Rossi, Patrick Paczkowski, Yueh-wei Shen, Kevin Morse, Brianna Flynn, Alaina Kaiser, Colin Ng, Kyle Gallatin, Tom Cain, Rong Fan, Sean Mackay, James Heath, Steven A. Rosenberg, James N. Kochenderfer, Jing Zhou, Adrian Bot. Polyfunctional anti-CD19 CAR T cells determined by single-cell multiplex proteomics associated with clinical activity in patients with advanced non-Hodgkin’s lymphoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 2990. doi:10.1158/1538-7445.AM2017-2990
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Nature Medicine, Springer Science and Business Media LLC, Vol. 26, No. 2 ( 2020-02-01), p. 270-280
    Type of Medium: Online Resource
    ISSN: 1078-8956 , 1546-170X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 1484517-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Nature Medicine, Springer Science and Business Media LLC, Vol. 26, No. 5 ( 2020-05), p. 803-803
    Type of Medium: Online Resource
    ISSN: 1078-8956 , 1546-170X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 1484517-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 2042-2042
    Abstract: This study is supported in part by funding from the CooperativeResearch and Development Agreement (CRADA) between the National Cancer Institute and Kite Pharma Introduction: Chimeric antigen receptor (CAR) engineered autologous T-cell therapy has shown promising efficacy in B-cell malignancies in an ongoing phase 1 study (Kochenderfer et al. J Clin Oncol 2014). Anti-CD19 CAR T-cell product characteristics and potential pharmacodynamic markers from patients in this study were evaluated together with updated clinical responses. Methods: In this National Cancer Institute (NCI) clinical trial (NCT00924326), patients with relapsed/refractory B-cell malignancies received conditioning with cyclophosphamide and fludarabine daily for 3 days starting on day -5; followed by 1-2 x 106/kg anti-CD19 CAR T cells engineered with a CAR expressing CD28 and CD3-zeta signaling domains. Forty one cytokines, chemokines and immune response related markers were measured in the serum of patients prior to conditioning and CAR T-cell infusion, and during an interval of 4 weeks post-CAR T-cell infusion. EMD Millipore Luminex® xMAP® multiplex assays were used to measure all analytes. A Luminex 200™ instrument and xPONENT® 3.1 software were used for data acquisition and analysis. Major T-cell phenotypic markers including CD4, CD8, CD45RA and CCR7 were evaluated by multicolor flow cytometry on CAR-expressing T cells prior to and post-infusion, using a BD FACSCanto II. FlowJo software was used for data analysis. T-cell marker expression, as well as cytokine and chemokine levels were analyzed together with the clinical response to anti-CD19 CAR T cells. Maximum fold increase (MFI) was defined as the maximum fold change of measured analytes above baseline (pre-conditioning, day -5) across sampling timepoints. Results: Anti-CD19 CAR T-cell products, PBMCs from 12 patients, and serum samples from 15 patients have been evaluated. In 12 patient lots evaluated to date, the median CD4+/CD8+ CAR T-cell ratio was 0.48 (range 0.02-6.12). In addition, the median ratio between naïve (TN) plus central memory T cells (TCM), and more differentiated effector memory (TEM) plus effector cells (TE), was 0.48 (range 0.1-16.8). Post-hoc analyses adjusted for multiple comparisons showed that the frequency of CD4+ TN and TCM cells in the 6-8 day T-cell lots was significantly greater than that of CD4+ TN and TCM cells in the 10 day T-cell lots. The corresponding frequencies of CD8+ TN and TCM cells in the 6-8 day T-cell lots compared to 10 day T-cell lots approached significance, but did not meet the threshold after multiplicity adjustment. Clinical responses were seen across broad ranges of CD4+/CD8+ and (TN+TCM)/(TEM+TE) ratios in the CAR T-cell product. CAR T cells upregulated T-cell activation and immune modulating markers, as well as released measurable levels of cytokines and chemokines in response to CAR engagement of CD19 in vitro, or post-infusion. Cytokine and chemokine levels achieved their peak 3-10 days post T-cell infusion and returned to baseline generally within 3 weeks. Key pro-inflammatory cytokines and markers were upregulated: IL-6 median fold increase (MFI) at peak of 66 (interquartile range 5-152), IFN-g MFI 57 (13-126), C-reactive protein MFI 6 (4-42); immune homeostatic cytokines IL-15 MFI 19 (7-54), IL-2 MFI 20 (4-22), IL-10 MFI 10 (4-15); chemokines monocyte chemotactic protein (MCP)-1 MFI 7 (5-9), MCP-4 MFI 4 (2-5); and the immune effector molecules granzyme A MFI 7 (6-17) and granzyme B MFI 5 (3-9). Further analyses are ongoing. Conclusion: Clinical responses were observed irrespective of the CD4+/CD8+ ratio in the CAR T cell product. Cytokines and immune effector mediators peaked and cleared within 3 weeks. This pharmacodynamic profile reveals a rapid and coordinated sequence of T cell activation underlying durable responses in patients with B-cell malignancies. Disclosures Perez: Kite Pharma: Employment, Equity Ownership. Navale:Kite Pharma: Employment, Equity Ownership; Amgen: Equity Ownership. Rossi:Kite Pharma: Employment, Equity Ownership; Amgen: Equity Ownership. Shen:Kite Pharma: Employment, Equity Ownership. Jiang:Kite Pharma: Employment, Equity Ownership. Sherman:Amgen: Equity Ownership; Kite Pharma: Employment, Equity Ownership. Mardiros:Kite Pharma: Employment, Equity Ownership. Yoder:Kite Pharma: Employment, Equity Ownership. Go:Kite Pharma: Employment, Equity Ownership; Amgen: Equity Ownership. Rosenberg:Kite Pharma: Other: CRADA between Surgery Branch-NCI and Kite Pharma. Wiezorek:Kite Pharma: Employment, Equity Ownership, Other: Officer of Kite Pharma. Roberts:Kite Pharma: Employment, Equity Ownership, Other: Officer of Kite Pharma. Chang:Kite Pharma: Employment, Equity Ownership, Other: Officer of Kite Pharma. Bot:Kite Pharma: Employment, Equity Ownership.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 4426-4426
    Abstract: This study is supported in part by funding from the Cooperative Research and Development Agreement (CRADA) between the National Cancer Institute and Kite Pharma Introduction: CAR-engineered autologous T-cell therapy has shown promising activity in relapsed/refractory B-cell malignancies in an ongoing phase 1 study (Kochenderfer et al. J Clin Oncol 2014). Lymphodepleting conditioning chemotherapy is critical for optimal CAR T-cell activity in animal models. We evaluated the effects of conditioning chemotherapy on cytokine and chemokine levels in patients dosed with anti-CD19 CAR T cells. Methods: In this National Cancer Institute clinical trial (NCT00924326), patients with relapsed/refractory B-cell malignancies received conditioning with cyclophosphamide and fludarabine daily for 3 days starting on day -5; followed by anti-CD19 CAR T cells engineered with a CAR comprising CD28 and CD3-zeta signaling domains. Forty one cytokines, chemokines and immune response related markers were measured in the blood of patients pre (day -5) and post conditioning (day 0) by using EMD Millipore Luminex® xMAP® multiplex assays. Data acquisition and analysis were performed using a Luminex 200™ instrument and xPONENT® 3.1 data analysis software. Increases in cytokine and chemokine levels were analyzed pre- and post- conditioning, and the fold-changes in cytokine and chemokine levels were analyzed relative to clinical outcome subsequent to infusion with anti-CD19 CAR T cells. Analyses were performed with the Wilcoxon rank sum test adjusted for multiplicity with a Bonferroni correction, using a nominal level of 0.006 for significance. Results: Samples from 15patients have been evaluated. There were significant increases pre- to post-conditioning in the levels of interleukin 15 (IL-15; p=0.001), interleukin 7 (IL-7; p=0.0002), and monocyte chemoattractant protein-1 (MCP-1; p 〈 0.0025) in blood, five days after the initiation of conditioning chemotherapy. Levels of interferon-gamma induced protein 10 (IP-10) were elevated post-conditioning, but did not meet the threshold for significance (p=0.048). Compared with baseline, levels of IL-15 increased on average 13 fold and levels of IL-7, IP-10 and MCP-1, about 2 fold. Comparison of the fold-increases in IL-15 upon conditioning between responders and non-responders approached significance (p=0.01), but did not meet the threshold after multiplicity adjustment. Larger fold-change increases for responders versus non-responders were also observed with placental growth factor (PLGF) (median fold increase 2.6 v. 1.6, average fold increase 32 v 4.2), C-reactive protein (CRP) (median fold increase 3.5 v 2.4, average fold increase 6.6 v. 2.0), IP-10 (median fold increase 2.1 v. 0.7, average fold increase 2.6 v. 2.8), and interleukin 10 (IL-10) (median fold increase 1.8 v. 0.4, average fold increase 3.1 v. 2.0), but did not meet the threshold for significance. In addition to ongoing analysis of conditioning-mediated cytokine induction and clinical response, we are evaluating the impact of conditioning chemotherapy dose on cytokine levels, as well as the relationship between conditioning-related cytokines and CAR T-cell expansion and persistence. Conclusions: The data obtained to date support the hypothesis that cytokines such as IL-15 play a key role in the clinical outcomes to anti-CD19 CAR T-cell therapy. Our results demonstrate that conditioning chemotherapy significantly increases the levels of homeostatic cytokines known to regulate T-cell expansion, as well as specific pro-inflammatory cytokines and chemokines. Optimization of conditioning chemotherapy is critical to the activity of CAR T-cell therapies. Disclosures Bot: Kite Pharma: Employment, Equity Ownership. Rossi:Amgen: Equity Ownership; Kite Pharma: Employment, Equity Ownership. Jiang:Kite Pharma: Employment, Equity Ownership. Navale:Amgen: Equity Ownership; Kite Pharma: Employment, Equity Ownership. Shen:Kite Pharma: Employment, Equity Ownership. Sherman:Amgen: Equity Ownership; Kite Pharma: Employment, Equity Ownership. Mardiros:Kite Pharma: Employment, Equity Ownership. Yoder:Kite Pharma: Employment, Equity Ownership. Go:Amgen: Equity Ownership; Kite Pharma: Employment, Equity Ownership. Rosenberg:Kite Pharma: Other: CRADA between Surgery Branch-NCI and Kite Pharma. Wiezorek:Kite Pharma: Employment, Equity Ownership, Other: Officer of Kite Pharma. Chang:Kite Pharma: Employment, Equity Ownership, Other: Officer of Kite Pharma. Roberts:Kite Pharma: Employment, Equity Ownership, Other: Officer of Kite Pharma.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 697-697
    Abstract: Anti-CD19 chimeric antigen receptor (CAR) T cells have powerful activity against B-cell lymphoma, but improvement is clearly needed. Toxicity, including cytokine-release syndrome (CRS) and neurologic toxicity, occurs after anti-CD19 CAR T cell infusions. Most CAR T-cell toxicity is caused, either directly or indirectly, by cytokines or other proteins that are secreted from CAR T cells. The structure of a CAR is an extracellular antigen-recognition domain connected by hinge and transmembrane (TM) domains to intracellular T-cell signaling moieties. In vitro, T cells expressing CARs with hinge and TM domains from the CD8-alpha molecule released significantly lower levels of cytokines compared with T cells expressing CARs with hinge and TM domains from CD28; however, T cells expressing CARs with hinge and TM domains from CD8-alpha retained sufficient functional capability to eradicate tumors from mice (Alabanza et al. Molecular Therapy. 2017. 25(11) 2452). To reduce cytokine production with a goal of reducing clinical toxicity, we incorporated CD8-alpha hinge and TM domains into an anti-CD19 CAR. The CAR also had a human antigen-recognition domain, a CD28 costimulatory domain, and a CD3-zeta domain. This CAR was designated Hu19-CD828Z and was encoded by a lentiviral vector. Hu19-CD828Z was different from the FMC63-28Z CAR that we used in prior studies. FMC63-28Z had hinge and TM domains from CD28 along with a CD28 costimulatory domain, a CD3-zeta domain, and murine-derived antigen-recognition domains. Twenty patients with B-cell lymphoma were treated on a phase I dose-escalation clinical trial of Hu19-CD828Z T cells (Table). Patients received low-dose cyclophosphamide and fludarabine daily for 3 days on days -5 to -3. Two days later, on day 0, CAR T cells were infused. The overall response rate (ORR) after 1st treatments with Hu19-CD828Z T cells was 70%, and the complete response (CR) rate 55%; the 6-month event-free survival was 55%. The anti-lymphoma activity of Hu19-CD828Z T cells in the current trial was comparable to the anti-lymphoma activity of FMC63-28Z T cells in a similar prior trial that also enrolled patients with advanced B-cell lymphoma. In the prior trial, we observed a 73% ORR, a 55% CR rate, and a 6-month event-free survival of 64% in 22 patients treated with FMC63-28Z T cells (Kochenderfer et al. Journ. Clin. Oncology. 2017 35(16) 1803). In our previous clinical trial of FMC63-28Z T cells, the rate of Grade 3 or 4 neurologic toxicity among 22 patients treated was 55%. Strikingly, in our trial of Hu19-CD828Z T cells, the rate of Grade 3 or 4 neurologic toxicity was only 5% (1/20 patients). In addition, the rate of Grade 2 or greater neurologic toxicity with FMC63-28Z T cells was 77.3% while the rate of Grade 2 or greater neurologic toxicity with Hu19-CD828Z T cells was 15%. To explore the mechanism for the difference in neurologic toxicity in patients receiving FMC63-28Z T cells versus Hu19-CD828Z T cells, we assessed serum levels of 41 proteins in patients treated with these CAR T-cells. This comparison is valid because the same Luminex methodology was used for the serum protein analysis for both trials, and controls of known amounts of each protein were assayed to ensure that protein levels were comparable on the different trials. Lower levels of several serum proteins that might be important in CAR toxicity were found in patients treated with Hu19-CD828Z T cells versus patients treated with FMC63-28Z T cells: Granzyme A (P 〈 0.001), Granzyme B (P 〈 0.001), interferon gamma (P=0.011), interleukin (IL)-15 (P=0.007), IL-2 (P=0.0034), and macrophage inflammatory protein-1A (P 〈 0.001). Median peak patient blood CAR+ cell levels were 44 cells/µL for Hu19-CD828Z and 46.5 cells/µL for FMC63-28Z (P=not significant). We hypothesize that lower levels of potentially neurotoxic proteins in patients receiving Hu19-CD828Z T cells versus FMC63-28Z T cells led to a lower frequency of neurologic toxicity in patients receiving Hu19-CD828Z T cells. The lower levels of immunologically active proteins found in the serum of patients receiving Hu19-CD828Z T cells compared with patients receiving FMC63-28Z T cells is consistent with our in vitro experiments showing lower cytokine production by T cells expressing CARs with CD8 hinge and TM domains versus CD28 hinge and TM domains. Altering CAR hinge and TM domains can affect CAR T-cell function and is a promising approach to improve the efficacy to toxicity ratio of CAR T-cells. Disclosures Rossi: KITE: Employment. Shen:Kite, a Gilead Company: Employment. Xue:Kite, a Gilead Company: Employment. Bot:KITE: Employment. Rosenberg:Kite, a Gilead Company: Research Funding. Kochenderfer:Kite a Gilead Company: Patents & Royalties: CAR technology, Research Funding; Celgene: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...