GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (6)
  • Bohlander, Stefan K.  (6)
  • Mansmann, Ulrich  (6)
Material
Publisher
  • American Society of Hematology  (6)
Language
Years
Subjects(RVK)
  • 1
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 1209-1209
    Abstract: About 20-25% of patients with Acute Myeloid Leukemia (AML) have primary drug resistant disease and fail to achieve complete remission after induction therapy. These patients have an extremely poor prognosis and cannot reliably be identified prior to therapy with current methods. The aim of this work was to develop a predictive tool that can identify therapy resistant patients with high accuracy at the time of diagnosis. We used two independent Affymetrix gene expression (GE) data sets and standard molecular and clinical variables to develop a predictive score for response to cytarabine/anthracycline-based induction chemotherapy. The "training set 1" consisted of 407 adult AML patients enrolled in the AMLCG-1999 trial (GSE37642). Training set 2 included 449 adults treated in various HOVON trials (GSE6891). GE-based classifiers for primary treatment resistance were developed in training set 1 using a penalized logistic regression approach (Lasso). A cut off with a specificity of 90% was predefined in training set 1. Training set 2 was used to select the best classifier. The predictive score and cut off were then validated in a third, fully independent data set, comprising 260 patients enrolled in AMLCG-1999 and 2008 trials studied by RNA sequencing. Additionally, targeted amplicon sequencing data for 68 recurrently mutated genes in AML was available for training set 1 and the validation set. The final classifier (Predictive score 29 MRC - PS29MRC) consisted of 29 gene expression values and the cytogenetic risk group (defined according to the United Kingdom Medical Research Council (MRC) classification) and was calculated as a weighted sum of Lasso coefficients and predictor values. PS29MRC was a highly significant predictor of resistant disease in the validation set with an odds ratio of 2.32 (p=1.53x10-8, AUC: 0.75). We tested the signature in a multivariable model including all variables with univariate p-value & lt;0.05. TP53 mutations, age and PS29MRC (OR: 1.70; p=0.0020) were left significant in the validation set. In comparison to published predictive classifiers like the model by Walter et al. (integrating information on age, performance status, white blood cell count, platelet count, bone marrow blasts, gender, type of AML, cytogenetics and NPM1 and FLT3-ITD status; OR: 1.27; p=0.00083; AUC: 0.70) or the modified molecular version of this score (OR: 1.37; p=0.0027; AUC: 0.63) PS29MRC reached superior predictive accuracy. (Walter et al.; Leukemia 2015) Since we aimed to develop a clinically useful score, we categorized PS29MRC to distinguish between patients who have a high probability of refractory disease and those who are likely to benefit from induction therapy (complete remission or complete remission with incomplete hematologic recovery). By applying the predefined cut off, we were able to reach a specificity of 90% and sensitivity of 46% in the validation set (OR: 7.83; p=6.06x10-9). The accuracy of PS29MRC was 77%. In the multivariable model the categorized classifier was highly significant (OR: 4.45; p=0.00040) and only age and TP53 mutations were left as significant variables again. Within the cytogenetic subgroups favorable (n=14; refractory: n=0; responders: n=13), intermediate (n=189; refractory: n=43; responders: n=136) and adverse (n=49; refractory: n=29; responders: n=15) the classifier showed an accuracy of 100%, 78% and 66%, respectively. Furthermore, the classifier predicted survival and was able to unravel the intermediate MRC subgroup (Figure). Additionally, genes included in our predictive signature seem to be involved in AML pathogenesis and potentially actively contribute to mechanisms responsible for primary therapeutic resistance. For example MIR-155HG, an already known parameter of inferior outcome in AML, contributed significantly to PS29MRC. There are currently ongoing trials with the novel inhibitor Pevonedistat that aim to modulate this target in AML. In summary we were able to develop a predictive risk classifier summarizing 29 gene expression values and the MRC classification that outperformed all currently used methods to predict refractory disease in intensively treated adult AML patients. PS29MRC demonstrates that it is possible to identify patients at risk of treatment failure in AML at diagnosis with high specificity. Figure 1. Kaplan-Meier estimates showing overall survival of AML patients in the validation set according to PS29MRC Figure 1. Kaplan-Meier estimates showing overall survival of AML patients in the validation set according to PS29MRC Figure 2. Figure 2. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 110, No. 11 ( 2007-11-16), p. 596-596
    Abstract: Patients with acute myeloid leukemia and a normal karyotype (NK AML) comprise 50% of all AML cases and show heterogeneous treatment outcomes and survival. We used gene expression profiling to develop a prognostic gene signature that predicts survival in this clinically relevant AML subgroup. Our analysis was based on data from 163 patients with newly diagnosed NK AML treated in the German multicenter AMLCG 2000 trial, for whom pretreatment gene expression profiles were obtained using Affymetrix HG-U133 microarrays. We used supervised principal component analysis to identify 86 oligonucleotide probesets (corresponding to 66 different genes and ESTs) that were correlated with overall survival (OS), and to define a prognostic score based on these probesets. When applied to an independent test cohort of 79 NK AML cases from the same AMLCG trial, the continuous prognostic score was predictive of OS (P=0.002, hazard ratio [HR] for a change in prognostic score equal to the difference between the 75th and 25th percentiles of the score = 1.94) and event-free survival (EFS) (P = 0.001, HR=1.70). The score based on our gene signature showed a strong correlation with the presence of the FLT3 internal tandem duplication (ITD), but retained its prognostic value for OS in the test cohort even after adjustment for FLT3 ITD, NPM1 status and age (P=0.037, HR=1.65). When we defined a cut-off value in the training population and used it to dichotomize the gene expression score values in the test cohort, the resulting two subgroups had significantly different OS (median, 259 days vs. not reached, P=0.002) and event-free survival (EFS) (median, 72 vs. 300 days, P = 0.015). We subsequently confirmed our findings in a group of 64 NK AML patients (Blood2006;108:1677–83) treated on CALGB 9621. In this validation cohort, our continuous gene expression score was predictive of OS (P 〈 0.001, HR=4.11) and EFS (P 〈 0.001, HR=2.90). In multivariate analyses that adjusted for age, NPM1 and FLT3 ITD status, the gene expression score remained significant for OS (P = 0.007, HR=3.40). When we used the prognostic score to split the CALGB validation cohort into two groups, based on the same cut-off value as in the AMLCG test population, the two resulting subgroups differed in their OS (median, 375 days vs. not reached, P 〈 0.001) and EFS (median, 258 vs. 728 days, P = 0.027). In summary, we present a novel and robust gene expression signature that offers independent prognostic information for patients with normal karyotype AML.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2007
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 3859-3859
    Abstract: Exome sequencing is widely used and established to detect tumor-specific sequence variants such as point mutations and small insertions/deletions. Beyond single nucleotide resolution, sequencing data can also be used to identify changes in sequence coverage between samples enabling the detection of copy number alterations (CNAs). Somatic CNAs represent gain or loss of genomic material in tumor cells like aneuploidies (e.g. monosomies and trisomies), duplications, or deletions. In order to test the feasibility of somatic CNA detection from exome data, we analyzed 13 acute myeloid leukemia (AML) patients with known cytogenetic alterations detected at diagnosis (n=8) and/or at relapse (n=11). Corresponding remission exomes from all patients were available as germline controls resulting in 19 comparisons of paired leukemia and remission exome data sets. Exome sequencing was performed on a HiSeq 2500 instrument (Illumina) with mean target coverage of 〉 100x. Exons with divergent coverage were detected using a linear regression model on mean exon coverage, and CNAs were called by an exact segmentation algorithm (Rigaill et al. 2012, Bioinformatics). For all samples, cytogenetic information was available either form routine chromosomal analysis or fluorescent in situ hybridization (FISH). Blast count were known for all but one AML sample (n=19). Copy number-neutral cytogenetic alterations such as balanced translocations were excluded from the comparative analysis. By CNA-analysis of exomes we were able to detect chromosomal aberrations consistent with routine cytogenetics in 18 out of 19 (95%) AML samples. In particular, we confirmed 2 out of 2 monosomies (both -7), and 9 out of 10 trisomies (+4, n=1; +8, n=8; +21, n=1), e.g. trisomy 8 in figure 1A. Partial amplifications or deletions of chromosomes were confirmed in 10 out of 10 AML samples (dup(1q), n=3; dup(8q), n=1; del(5q), n=3; del(17p), n=1; del(20q), n=2), e.g. del(5q) in figure 1B. In the one case with inconsistent findings of chromosomal aberrations between exome and cytogenetic data there was a small subclone harboring the alteration described in only 4 out of 21 metaphases (19%). To assess the specificity of our CNA approach, we analyzed the exomes of 44 cytogenetically normal (CN) AML samples. Here we did not detect any CNAs larger than 5 Mb in the vast majority of these samples (43/44, 98%), only one large CNA was detected indicating a trisomy 8. Estimates of the clone size were highly correlated between CNA-analysis of exomes and the parameters from cytogenetics and cytomorphology (p=0.0076, Fisher's exact test, Figure 1C). In CNA-analysis of exomes, we defined the clone size based on the coverage ratio: . Clone size estimation by cytogenetics and cytomorphology was performed by calculating the mean of blast count and abnormal metaphase/interphase count. Of note, clones estimated by CNA-analysis of exomes tended to be slightly larger. This may result from purification by Ficoll gradient centrifugation prior to DNA extraction for sequencing and/or the fact that the fraction of cells analyzed by cytogenetics does not represent the true size of the malignant clone accurately because of differences in the mitotic index between normal and malignant cells. Overall, there was a high correlation between our CNA analysis of exome sequencing data and routine cytogenetics including limitations in the detection of small subclones. Our results confirm that high throughput sequencing is a versatile, valuable, and robust method to detect chromosomal changes resulting in copy number alterations in AML with high specificity and sensitivity (98% and 95%, respectively). Figure 1. (A) Detection of trisomy 8 with an estimated clone size of 100% (B) Detection of deletion on chromosome 5q with an estimated clone size of 90% (C) Correlation of clone size estimation by routine diagnostics and exome sequencing (p=0.0076) Figure 1. (A) Detection of trisomy 8 with an estimated clone size of 100%. / (B) Detection of deletion on chromosome 5q with an estimated clone size of 90%. / (C) Correlation of clone size estimation by routine diagnostics and exome sequencing (p=0.0076) Figure 2. Figure 2. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 112, No. 10 ( 2008-11-15), p. 4193-4201
    Abstract: Patients with cytogenetically normal acute myeloid leukemia (CN-AML) show heterogeneous treatment outcomes. We used gene-expression profiling to develop a gene signature that predicts overall survival (OS) in CN-AML. Based on data from 163 patients treated in the German AMLCG 1999 trial and analyzed on oligonucleotide microarrays, we used supervised principal component analysis to identify 86 probe sets (representing 66 different genes), which correlated with OS, and defined a prognostic score based on this signature. When applied to an independent cohort of 79 CN-AML patients, this continuous score remained a significant predictor for OS (hazard ratio [HR] , 1.85; P = .002), event-free survival (HR = 1.73; P = .001), and relapse-free survival (HR = 1.76; P = .025). It kept its prognostic value in multivariate analyses adjusting for age, FLT3 ITD, and NPM1 status. In a validation cohort of 64 CN-AML patients treated on CALGB study 9621, the score also predicted OS (HR = 4.11; P 〈 .001), event-free survival (HR = 2.90; P 〈 .001), and relapse-free survival (HR = 3.14, P 〈 .001) and retained its significance in a multivariate model for OS. In summary, we present a novel gene-expression signature that offers additional prognostic information for patients with CN-AML.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 608-608
    Abstract: Acute myeloid leukemia (AML) with isolated trisomy 13 (AML+13) is rare and frequently associated with FAB M0 morphology. The clinical course is not well characterized but according to the ELN classification of intermediate prognosis. Eighty to one-hundred percent of patients (pts) with AML+13 carry mutations in the RUNX1 gene. Over-expression of FLT3 (located on chromosome 13 [chr 13]) due to the additional gene copy on the third chr 13 was proposed as a mechanism of leukemogenesis in AML+13 (gene dosage hypothesis). We set out to characterize the clinical course of AML+13 pts and elucidate their molecular background using whole exome sequencing, targeted resequencing and gene expression profiling. We identified 23 pts with AML+13 enrolled in a multicenter trial of the German AML Cooperative Group (AMLCG-1999) and compared this group to 386 pts without +13 who were classified in the ELN Intermediate-II genetic category. All pts received intensive induction chemotherapy. There was no significant difference in age, white blood cell or platelet count between the two groups. However, LDH levels were significantly (p=.01) lower in the AML+13 group while bone marrow blast percentage was significantly higher (p=.04). Twelve AML+13 pts (52%) reached complete remission, but all relapsed. Relapse-free and overall survival were inferior in the AML+13 group compared to other ELN Intermediate-II pts (median RFS, 9 vs 15 months, p=.01; median OS, 7 vs. 13 months, p=.03). Remission samples from two AML+13 pts were available as normal control for exome sequencing. Using SureSelect human all exon target enrichment (Agilent) followed by 80bp paired-end sequencing on an Illumina GAIIx platform, we were able to identify non-synonymous leukemia-specific mutations affecting, among others, RUNX1, ASXL1, PTPN11 and CEBPZ. Genes identified by exome sequencing and a panel of genes recurringly mutated in AML were studied by targeted amplicon resequencing in all AML+13 pts with available material (16/23; Figure). As described before, a high incidence of RUNX1 mutations (75%) was identified. In addition, we detected mutations in spliceosome components in 14/16 (88%) of AML+13 pts, including SRSF2 codon 95 mutations in 13/16 pts (81%). One patient without SRSF2 mutation showed a mutation in SF3B1. Moreover, recurring mutations were found in ASXL1 (44%) and BCOR (25%), and were associated with RUNX1 and SRSF2 mutations. Interestingly, both pts without mutations in the splicing machinery had mutations in DNMT3A, which were also mutually exclusive with mutations in RUNX1 or ASXL1. Two pts carried mutations in CEBPZ suggesting that CEBPZ is a novel recurringly mutated gene in AML.FigureMutation frequencies in 16 patients with AML+13Figure. Mutation frequencies in 16 patients with AML+13 To further characterize this genetically homogenous subgroup, we compared gene expression profiles of 9 pts with AML+13 with 509 AML pts without +13. We identified 678 (up-regulated 492; down-regulated 186) probe sets as significantly deregulated. Only 59 (8.7%) of these probe sets were localized on chr 13, but of those, 55 were up-regulated and only 4 were down-regulated. Up-regulated probe sets on chr 13 included FOXO1, FLT3 and RB1. The strongest down-regulated probe set on chr 13 belonged to the tumor suppressor gene SPRY2, which is a negative regulator of receptor tyrosine kinases. Gene set enrichment analysis showed significant deregulation of gene sets associated with regulation of transcription and nuclear transport. In summary, our study is the first to show that AML+13 is significantly associated with inferior OS and RFS compared to other intermediate-risk cytogenetic abnormalities in a homogeneously treated cohort. Furthermore, we present evidence that AML+13 leukemias are a genetically quite homogenous subgroup. AML+13 is not only associated with a high rate of RUNX1 mutations but also with mutations in SRFS2, ASXL1 and BCOR. The incidence of mutations in SRSF2 in AML+13 is the highest of any AML subgroup reported so far. In addition, our gene expression data show a homogenous expression profile associated with AML+13. The striking association of a few recurring mutations in AML+13 suggests a biological relationship with synergistic lesions during leukemogenesis. While mutations in RUNX1, ASXL1 and up-regulation of FLT3 were previously reported as markers of poor prognosis in AML, the combination of these lesions might be responsible for the extremely poor outcome of AML+13. Disclosures: Krebs: Illumina: Honoraria. Greif:Illumina: Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 124, No. 8 ( 2014-08-21), p. 1304-1311
    Abstract: AML patients with isolated trisomy 13 have a very poor clinical outcome Isolated trisomy 13 in AML is associated with a high frequency of mutations in SRSF2 (81%) and RUNX1 (75%)
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...