GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (1)
  • Boeve, Bradley F.  (1)
  • Kantarci, Kejal  (1)
  • 1
    In: Alzheimer's & Dementia, Wiley, Vol. 18, No. S5 ( 2022-12)
    Abstract: In vivo tau‐positron emission tomography (PET) is an attractive biomarker for Alzheimer’s disease (AD) diagnosis and treatment. However, tau‐PET is less widely available than other modalities. In this study, we tested cross‐modality synthesis of tau‐PET brain images from fluorodeoxyglucose F‐18 (FDG)‐PET using a deep convolutional neural network (CNN). Method Participants (n=1,192) who had brain FDG‐PET with 18 F‐FDG and tau‐PET with Flortaucipir (F‐18‐AV‐1451) were included for training and testing. This cohort spanned normal aging (ages 26‐98), pre‐clinical, and clinical AD and related disorders including the FTD and DLB spectrum. External validation was done using ADNI (n=288). The PET scans were co‐registered to the corresponding MRI and subsequently warped to Mayo Clinic Adult Lifespan Template (MCALT) space. Tau‐PET images were SUVR‐normalized to the cerebellar crus, and FDG to the pons. A 3D dense‐U‐net model was utilized as an architecture. Cross‐validation experiments were conducted using 5‐fold validations (60% training set, 20% validation set, and 20% test set) with mean squared error as the loss function. Result Our dense‐U‐net model successfully synthesized tau‐PET from metabolic images with good correlation and low prediction error for regional SUVRs (Figure 1A‐C). The model showed a robust prediction ability, performing accurately in an independent, external ADNI cohort (Figure 1D‐F). The model‐imputed tau‐PET significantly improved performance in classifying tau positivity (mean AUROC(±SD)=0.78±0.04 and 0.85±0.03 for FDG‐PET and synthesized tau‐PET, respectively) and diagnostic groups (cognitively unimpaired with abnormal amyloid‐PET vs. cognitively impaired with abnormal amyloid‐PET) compared to the original input FDG data (mean AUROC(±SD)=0.89±0.04, 0.85±0.05 0.91±0.04 for actual tau‐PET, FDG‐PET and synthesized tau‐PET, respectively) (Figure 2), suggesting enhanced clinical utility for metabolic images. The ADNI cohort also showed similar results (for tau positivity: AUROC=0.66 and 0.78 for FDG‐PET and synthesized tau‐PET, respectively; for CU A+ vs. CI A+: AUROC=0.86, 0.62, and 0.73 for actual tau‐PET, FDG‐PET, and synthesized tau‐PET; Figure 3). Conclusion We showed that using a CNN model to predict tau‐PET from FDG‐PET is feasible. The synthesized tau‐PET can augment the value of FDG‐PET, facilitating the multi‐modal diagnosis of AD.
    Type of Medium: Online Resource
    ISSN: 1552-5260 , 1552-5279
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2201940-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...