GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 120, No. 2 ( 2012-07-12), p. 395-403
    Abstract: Cytogenetically normal acute myeloid leukemia (CN-AML) with biallelic CEBPA gene mutations (biCEPBA) represents a distinct disease entity with a favorable clinical outcome. So far, it is not known whether other genetic alterations cooperate with biCEBPA mutations during leukemogenesis. To identify additional mutations, we performed whole exome sequencing of 5 biCEBPA patients and detected somatic GATA2 zinc finger 1 (ZF1) mutations in 2 of 5 cases. Both GATA2 and CEBPA are transcription factors crucial for hematopoietic development. Inherited or acquired mutations in both genes have been associated with leukemogenesis. Further mutational screening detected novel GATA2 ZF1 mutations in 13 of 33 biCEBPA-positive CN-AML patients (13/33, 39.4%). No GATA2 mutations were found in 38 CN-AML patients with a monoallelic CEBPA mutation and in 89 CN-AML patients with wild-type CEBPA status. The presence of additional GATA2 mutations (n=10) did not significantly influence the clinical outcome of 26 biCEBPA-positive patients. In reporter gene assays, all tested GATA2 ZF1 mutants showed reduced capacity to enhance CEBPA-mediated activation of transcription, suggesting that the GATA2 ZF1 mutations may collaborate with biCEPBA mutations to deregulate target genes during malignant transformation. We thus provide evidence for a genetically distinct subgroup of CN-AML. The German AML cooperative group trials 1999 and 2008 are registered with the identifiers NCT00266136 and NCT01382147 at www.clinicaltrials.gov.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 2772-2772
    Abstract: The leukemia-associated fusion gene CBFB/MYH11 results from a pericentric inversion of chromosome 16, inv(16)(p13.1q22), or less commonly from a t(16;16)(p13.1;q22). Although this cytogenetic aberration is associated with a rather favorable prognosis in acute myeloid leukemia (AML), nearly half of patients eventually relapse after standard chemotherapy. To systematically analyze the clonal evolution in this AML-subgroup, we performed whole exome sequencing (WES) of 13 adult CBFB/MYH11-rearranged AML patients using matched diagnostic, remission and relapse samples ('triplets'). Thereby, we found 2-12 (median: 8) somatic sequence variants per patient at diagnosis and 2-13 (median: 4) mutations at relapse. These included mutations in genes known to cooperate with CBFB/MYH11 (e.g. RAS, FLT3, KIT) as well as in genes, which had not been associated with AML previously (MYO15A, EVPL, ROS1, FTCD and ASL). Next, we designed a custom targeted sequencing assay (Haloplex, Agilent), including the candidate genes from exome sequencing, as well as genes known to be recurrently mutated in AML (455 genes, 1.86 Mbp total target sequence) and performed targeted sequencing of 32 CBFB/MYH11-rearranged AML triplet samples (including the 13 triplets initially analyzed by WES) with a median read depth of 500. The results are summarized in Figure 1. Fourteen genes were found mutated in at least two patients at diagnosis and 9 genes at the timepoint of relapse. In all CBFB/MYH11-rearranged patients, more than one additional mutation was identified, each of them at a distinct variant allele-frequency, indicating clonal heterogeneity. All but one FLT3 TKD (D835 or N676) mutation were lost at relapse, whereas FLT3 ITDs were stable in 3 out of 7 patients. One FLT3 ITD was gained at relapse. The majority of RAS,KIT and CBL mutations were lost and none was acquired at relapse. Particularly, the loss of 6 out of 7 KIT exon 8 frameshift mutations was surprising since KIT exon 8 frameshift mutations were negative prognostic markers in a cohort of 162 patients with CBFB/MYH11 rearranged leukemia (OS: HR= 3.12, p= 0.001; Opatz et al. submitted). In contrast, mutations in WT1 and DNMT3A were all stable during relapse evolution and four patients gained mutations in these two genes. Furthermore, aberrations in CSF3R, BCORL1 and ZBTB7A were acquired at relapse. Of note, WT1 mutations causing a frameshift in exon 6 were found in 9% of adult de novo AML with CBFB/MYH11-rearrangement and have recently been characterized by our research group as negative prognostic marker for overall survival (HR: 2.93, p= 0.011) (Opatz et al. submitted). These findings are in line with the observed gain of WT1 mutations in 10% of relapsed cytogenetically normal AML patients (Greif et al., 2018, Clin Cancer Res) suggesting a common mechanism of disease progress across cytogenetic subgroups. Surprisingly, a mutation in ZBTB7A, a gene frequently altered in RUNX1/RUNX1T1 positiv leukemia (23%) but rarely in CBFB/MYH11 positiv leukemia (2%), was gained at relapse in one patient. Mutations in epigenetic modifiers, cohesion complex components and janus kinases are known cooperating events in RUNX1/RUNX1T1 rearranged leukemia and were, except for DNMT3A, not found in our CBFB/MYH11-positive cohort. The new recurring mutations in MYO15A (n=3), ROS1 (n=2), FTCD (n=2) and ASL (n=2) were partially lost at relapse, whereas EVPL (n=2) mutations were stable during the course of disease. In addition, we identified mutations in APC2, TP53 and ZFHX4 (gained at relapse), PTPN11, MECOM, BCOR, NPM1 and IDH2 (stable) as well as in ABL1 (lost at relapse) in individual patients. Taken together, our findings suggest that mutations in signaling pathway genes seem to be unstable during disease progression and may thus not be required for the evolution of relapse. The frequent loss of signaling gene mutations indicates that relapse might evolve from an early ancestral clone carrying the CBFB/MYH11 rearrangement only. Figure 1: Mutation profile of 32 patients with CBFB/MYH11-rearranged AML. The stability of recurrently mutated genes during the evolution of relapse is shown. Diagonal lines indicate two mutations in the respective gene. Figure 1 Figure 1. Disclosures Thiede: AgenDix: Other: Ownership; Novartis: Honoraria, Research Funding. Middeke:Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Roche: Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees. Stoelzel:Neovii: Speakers Bureau. Metzeler:Novartis: Consultancy; Celgene: Consultancy, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 608-608
    Abstract: Acute myeloid leukemia (AML) with isolated trisomy 13 (AML+13) is rare and frequently associated with FAB M0 morphology. The clinical course is not well characterized but according to the ELN classification of intermediate prognosis. Eighty to one-hundred percent of patients (pts) with AML+13 carry mutations in the RUNX1 gene. Over-expression of FLT3 (located on chromosome 13 [chr 13]) due to the additional gene copy on the third chr 13 was proposed as a mechanism of leukemogenesis in AML+13 (gene dosage hypothesis). We set out to characterize the clinical course of AML+13 pts and elucidate their molecular background using whole exome sequencing, targeted resequencing and gene expression profiling. We identified 23 pts with AML+13 enrolled in a multicenter trial of the German AML Cooperative Group (AMLCG-1999) and compared this group to 386 pts without +13 who were classified in the ELN Intermediate-II genetic category. All pts received intensive induction chemotherapy. There was no significant difference in age, white blood cell or platelet count between the two groups. However, LDH levels were significantly (p=.01) lower in the AML+13 group while bone marrow blast percentage was significantly higher (p=.04). Twelve AML+13 pts (52%) reached complete remission, but all relapsed. Relapse-free and overall survival were inferior in the AML+13 group compared to other ELN Intermediate-II pts (median RFS, 9 vs 15 months, p=.01; median OS, 7 vs. 13 months, p=.03). Remission samples from two AML+13 pts were available as normal control for exome sequencing. Using SureSelect human all exon target enrichment (Agilent) followed by 80bp paired-end sequencing on an Illumina GAIIx platform, we were able to identify non-synonymous leukemia-specific mutations affecting, among others, RUNX1, ASXL1, PTPN11 and CEBPZ. Genes identified by exome sequencing and a panel of genes recurringly mutated in AML were studied by targeted amplicon resequencing in all AML+13 pts with available material (16/23; Figure). As described before, a high incidence of RUNX1 mutations (75%) was identified. In addition, we detected mutations in spliceosome components in 14/16 (88%) of AML+13 pts, including SRSF2 codon 95 mutations in 13/16 pts (81%). One patient without SRSF2 mutation showed a mutation in SF3B1. Moreover, recurring mutations were found in ASXL1 (44%) and BCOR (25%), and were associated with RUNX1 and SRSF2 mutations. Interestingly, both pts without mutations in the splicing machinery had mutations in DNMT3A, which were also mutually exclusive with mutations in RUNX1 or ASXL1. Two pts carried mutations in CEBPZ suggesting that CEBPZ is a novel recurringly mutated gene in AML.FigureMutation frequencies in 16 patients with AML+13Figure. Mutation frequencies in 16 patients with AML+13 To further characterize this genetically homogenous subgroup, we compared gene expression profiles of 9 pts with AML+13 with 509 AML pts without +13. We identified 678 (up-regulated 492; down-regulated 186) probe sets as significantly deregulated. Only 59 (8.7%) of these probe sets were localized on chr 13, but of those, 55 were up-regulated and only 4 were down-regulated. Up-regulated probe sets on chr 13 included FOXO1, FLT3 and RB1. The strongest down-regulated probe set on chr 13 belonged to the tumor suppressor gene SPRY2, which is a negative regulator of receptor tyrosine kinases. Gene set enrichment analysis showed significant deregulation of gene sets associated with regulation of transcription and nuclear transport. In summary, our study is the first to show that AML+13 is significantly associated with inferior OS and RFS compared to other intermediate-risk cytogenetic abnormalities in a homogeneously treated cohort. Furthermore, we present evidence that AML+13 leukemias are a genetically quite homogenous subgroup. AML+13 is not only associated with a high rate of RUNX1 mutations but also with mutations in SRFS2, ASXL1 and BCOR. The incidence of mutations in SRSF2 in AML+13 is the highest of any AML subgroup reported so far. In addition, our gene expression data show a homogenous expression profile associated with AML+13. The striking association of a few recurring mutations in AML+13 suggests a biological relationship with synergistic lesions during leukemogenesis. While mutations in RUNX1, ASXL1 and up-regulation of FLT3 were previously reported as markers of poor prognosis in AML, the combination of these lesions might be responsible for the extremely poor outcome of AML+13. Disclosures: Krebs: Illumina: Honoraria. Greif:Illumina: Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 124, No. 8 ( 2014-08-21), p. 1304-1311
    Abstract: AML patients with isolated trisomy 13 have a very poor clinical outcome Isolated trisomy 13 in AML is associated with a high frequency of mutations in SRSF2 (81%) and RUNX1 (75%)
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 24, No. 7 ( 2018-04-01), p. 1716-1726
    Abstract: Purpose: To study mechanisms of therapy resistance and disease progression, we analyzed the evolution of cytogenetically normal acute myeloid leukemia (CN-AML) based on somatic alterations. Experimental Design: We performed exome sequencing of matched diagnosis, remission, and relapse samples from 50 CN-AML patients treated with intensive chemotherapy. Mutation patterns were correlated with clinical parameters. Results: Evolutionary patterns correlated with clinical outcome. Gain of mutations was associated with late relapse. Alterations of epigenetic regulators were frequently gained at relapse with recurring alterations of KDM6A constituting a mechanism of cytarabine resistance. Low KDM6A expression correlated with adverse clinical outcome, particularly in male patients. At complete remission, persistent mutations representing preleukemic lesions were observed in 48% of patients. The persistence of DNMT3A mutations correlated with shorter time to relapse. Conclusions: Chemotherapy resistance might be acquired through gain of mutations. Insights into the evolution during therapy and disease progression lay the foundation for tailored approaches to treat or prevent relapse of CN-AML. Clin Cancer Res; 24(7); 1716–26. ©2018 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Leukemia, Springer Science and Business Media LLC, Vol. 34, No. 10 ( 2020-10), p. 2621-2634
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2008023-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Leukemia, Springer Science and Business Media LLC, Vol. 34, No. 6 ( 2020-06), p. 1553-1562
    Abstract: The fusion genes CBFB / MYH11 and RUNX1 / RUNX1T1 block differentiation through disruption of the core binding factor (CBF) complex and are found in 10–15% of adult de novo acute myeloid leukemia (AML) cases. This AML subtype is associated with a favorable prognosis; however, nearly half of CBF-rearranged patients cannot be cured with chemotherapy. This divergent outcome might be due to additional mutations, whose spectrum and prognostic relevance remains hardly defined. Here, we identify nonsilent mutations, which may collaborate with CBF-rearrangements during leukemogenesis by targeted sequencing of 129 genes in 292 adult CBF leukemia patients, and thus provide a comprehensive overview of the mutational spectrum (‘mutatome’) in CBF leukemia. Thereby, we detected fundamental differences between CBFB/MYH11 - and RUNX1/RUNX1T1 -rearranged patients with ASXL2 , JAK2, JAK3, RAD21 , TET2, and ZBTB7A being strongly correlated with the latter subgroup. We found prognostic relevance of mutations in genes previously known to be AML-associated such as KIT , SMC1A, and DHX15 and identified novel, recurrent mutations in NFE2 (3%), MN1 (4%), HERC1 (3%), and ZFHX4 (5%). Furthermore, age 〉 60 years, nonprimary AML and loss of the Y-chromosomes are important predictors of survival. These findings are important for refinement of treatment stratification and development of targeted therapy approaches in CBF leukemia.
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2008023-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 122, No. 10 ( 2013-09-05), p. 1761-1769
    Abstract: FLT3 N676K mutations without concurrent internal tandem duplication (ITD) are associated with core-binding factor leukemia. N676K activates FLT3 and downstream signaling pathways.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 1058-1058
    Abstract: Whole exome sequencing (WES) or customized gene panel sequencing (GPS) in acute myeloid leukemia (AML) is commonly used to detect point mutations and small insertions/deletions that might contribute to leukemogenesis. Beyond sequence variant detection, targeted sequencing also allows to detect gain or loss of genomic material in tumor cells (i.e. copy number alteration; CNA) based on the comparison of sequence coverage in target regions between samples. This approach allows not only for the detection of whole chromosome aneuploidies but also submicroscopic deletions or amplifications affecting small regions of the genome. We selected cytogenetically well characterized AML patients with partial deletions of the long arm of chromosome 9 (AML del(9q), n=5) and performed WES at diagnosis and at complete remission (SureSelect, Agilent; Illumina paired-end sequencing). At least 75% of the target region was sequenced with coverage ≥ 10x. As state of the art method for CNA detection, we also performed SNP array profiling (Affymetrix) of the 5 diagnostic AML samples. In addition, we performed GPS of 140 genes (total target 492 kb; mean coverage 356x, range 112-995x; targets on chromosome 9 with mean coverage 275x, range 71-705x) in the diagnostic samples from 26 cases of AML del(9q) (including the 5 exome cases) and 21 AML patients without any detectable cytogenetic aberration on chromosome 9 (control cohort). Our custom gene panel (Haloplex, Agilent) included known mutational targets in AML and candidate genes located on 9q. We used a linear regression model to normalize the mean read count of exon regions for target enrichment efficiency and to model the test sample coverage as a linear function of the control sample coverage (Rigaill et al., 2012, Bioinformatics). This approach is able to deal with regions of zero coverage, monoallelic deletions and tolerates outliers. An exact segmentation algorithm was applied to each chromosome individually in order to separate regions of equivalent exon coverage from regions of different exon coverage between test and control samples. Thereby, regions of genomic alterations can be defined as well as ranges for the flanking breakpoints. We defined a maximum of 5 regions per chromosome and a minimum size of 2 exons per region. For WES analysis, diagnostic AML del(9q) data sets were used as test samples and matching remission data sets were used as control. The minimum mean exon coverage was set to 10x. For custom GPS analysis, the minimum coverage was set to 50x and each AML del(9q) patient was compared to each control patient. Only chromosome 9 was included in the analysis, as patients of the control cohort harbor additional alterations on other chromosomes. CNAs were defined as regions that differ from the majority of control samples. Overlapping CNAs of AML del(9q) patients were subsequently identified as common altered regions. CNA profiling based on WES data sets of AML del(9q) patients showed somatically acquired stretches of significantly reduced read counts for genes located on 9q in 2 of the 5 patients (Figure 1A), consistent with the corresponding SNP array results. CNA profiling based on GPS from 26 AML del(9q) patients and 21 control patients defined a common deleted region ranging from at least 79.2 Mb to 87.6 Mb (Figure 1B). The deletion was detected in 18 out of 26 (70%) of the AML del(9q) patients. Neither the comparison of the test samples to each other nor the comparison of the control samples to each other resulted in CNA calling. It is very likely that the varying clone size harboring the 9q deletion in the diagnostic samples is limiting for CNA detection. This is also supported by the observation that patients without detectable 9q deletion in our CNA analyses tended to have fewer metaphases with 9q deletion (median 27%, range 8-77%) compared to patient samples with detectable 9q deletion in the CNA analyses (median 95%, range 24-100%; p = 0.001), as reported by routine cytogenetics. Our study confirms that, despite the experimental variability of target enrichment, sequencing data can be efficiently used not only to identify somatic mutations with single nucleotide resolution, but also to detect recurring and/or somatic CNAs in AML. Similar to CNA detection by SNP array analysis, the clonal architecture of the tumor is limiting for sensitivity. However, this limitation might be overcome by increasing the read depth. Figure 1: Figure 1:. Detection of del(9q) in WES (A) and GPS data sets (B) Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Haematologica, Ferrata Storti Foundation (Haematologica), Vol. 103, No. 3 ( 2018-03), p. 456-465
    Type of Medium: Online Resource
    ISSN: 0390-6078 , 1592-8721
    Language: English
    Publisher: Ferrata Storti Foundation (Haematologica)
    Publication Date: 2018
    detail.hit.zdb_id: 2186022-1
    detail.hit.zdb_id: 2030158-3
    detail.hit.zdb_id: 2805244-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...