GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (3)
  • Blomqvist, Carl  (3)
  • 1
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 6, No. 9 ( 2016-09-01), p. 1052-1067
    Abstract: Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P & lt; 10−8 seven new cross-cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type–specific expression quantitative trait locus and enhancer–gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P & lt; 10−5 in the three-cancer meta-analysis. Significance: We demonstrate that combining large-scale GWA meta-analysis findings across cancer types can identify completely new risk loci common to breast, ovarian, and prostate cancers. We show that the identification of such cross-cancer risk loci has the potential to shed new light on the shared biology underlying these hormone-related cancers. Cancer Discov; 6(9); 1052–67. ©2016 AACR. This article is highlighted in the In This Issue feature, p. 932
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 21, No. 10 ( 2012-10-01), p. 1783-1791
    Abstract: Background: Our recent genome-wide association study identified a novel breast cancer susceptibility locus at 9q31.2 (rs865686). Methods: To further investigate the rs865686–breast cancer association, we conducted a replication study within the Breast Cancer Association Consortium, which comprises 37 case–control studies (48,394 cases, 50,836 controls). Results: This replication study provides additional strong evidence of an inverse association between rs865686 and breast cancer risk [study-adjusted per G-allele OR, 0.90; 95% confidence interval (CI), 0.88; 0.91, P = 2.01 × 10−29] among women of European ancestry. There were ethnic differences in the estimated minor (G)-allele frequency among controls [0.09, 0.30, and 0.38 among, respectively, Asians, Eastern Europeans, and other Europeans; P for heterogeneity (Phet) = 1.3 × 10−143] , but no evidence of ethnic differences in per allele OR (Phet = 0.43). rs865686 was associated with estrogen receptor–positive (ER+) disease (per G-allele OR, 0.89; 95% CI, 0.86–0.91; P = 3.13 × 10−22) but less strongly, if at all, with ER-negative (ER−) disease (OR, 0.98; 95% CI, 0.94–1.02; P = 0.26; Phet = 1.16 × 10−6), with no evidence of independent heterogeneity by progesterone receptor or HER2 status. The strength of the breast cancer association decreased with increasing age at diagnosis, with case-only analysis showing a trend in the number of copies of the G allele with increasing age at diagnosis (P for linear trend = 0.0095), but only among women with ER+ tumors. Conclusions: This study is the first to show that rs865686 is a susceptibility marker for ER+ breast cancer. Impact: The findings further support the view that genetic susceptibility varies according to tumor subtype. Cancer Epidemiol Biomarkers Prev; 21(10); 1783–. ©2012 AACR.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 72, No. 7 ( 2012-04-01), p. 1795-1803
    Abstract: The 19p13.1 breast cancer susceptibility locus is a modifier of breast cancer risk in BRCA1 mutation carriers and is also associated with the risk of ovarian cancer. Here, we investigated 19p13.1 variation and risk of breast cancer subtypes, defined by estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2) status, using 48,869 breast cancer cases and 49,787 controls from the Breast Cancer Association Consortium (BCAC). Variants from 19p13.1 were not associated with breast cancer overall or with ER-positive breast cancer but were significantly associated with ER-negative breast cancer risk [rs8170 OR, 1.10; 95% confidence interval (CI), 1.05–1.15; P = 3.49 × 10−5] and triple-negative (ER-, PR-, and HER2-negative) breast cancer (rs8170: OR, 1.22; 95% CI, 1.13–1.31; P = 2.22 × 10−7). However, rs8170 was no longer associated with ER-negative breast cancer risk when triple-negative cases were excluded (OR, 0.98; 95% CI, 0.89–1.07; P = 0.62). In addition, a combined analysis of triple-negative cases from BCAC and the Triple Negative Breast Cancer Consortium (TNBCC; N = 3,566) identified a genome-wide significant association between rs8170 and triple-negative breast cancer risk (OR, 1.25; 95% CI, 1.18–1.33; P = 3.31 × 10−13] . Thus, 19p13.1 is the first triple-negative–specific breast cancer risk locus and the first locus specific to a histologic subtype defined by ER, PR, and HER2 to be identified. These findings provide convincing evidence that genetic susceptibility to breast cancer varies by tumor subtype and that triple-negative tumors and other subtypes likely arise through distinct etiologic pathways. Cancer Res; 72(7); 1795–803. ©2012 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...