GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Neurology, Ovid Technologies (Wolters Kluwer Health), Vol. 98, No. 21 ( 2022-05-24), p. 884-889
    Abstract: Secondary CNS involvement in systemic B-cell lymphoma (SCNSL) is difficult to treat and displays dismal clinical outcomes. Chimeric antigen receptor (CAR) T cells emerged as a powerful treatment for systemic lymphoma. We aimed to evaluate whether CAR T cells also represent a safe and effective therapy for SCNSL. Methods We retrospectively searched our institutional database for patients with SCNSL treated with CD19-directed CAR T cells. Results We identified 10 cases, including 7 patients with intraparenchymal lesions and 3 patients with leptomeningeal disease. CNS staging at 1 month after CAR T-cell transfusion showed disease response (stable disease, partial response, and complete response) in 7 patients (70%), including 2 cases of long-lasting complete response (20%). One patient developed pseudoprogression, which resolved under steroids. Response of CNS disease was associated with systemic 1-month response. With a median follow-up of 6 months, median overall and systemic progression-free survival was 7 and 3 months, respectively. Neurotoxic symptoms occurred in 6 patients, with 3 patients developing severe neurotoxicity (American Society for Transplantation and Cellular Therapy grade ≥3). Discussion CAR T cells induce considerable antitumor effects in SCNSL, and CNS response reflects systemic response. Neurotoxicity appears similar to previous reports on patients with lymphoma without CNS involvement. CAR T cells may therefore represent an effective and safe therapy for SCNSL.
    Type of Medium: Online Resource
    ISSN: 0028-3878 , 1526-632X
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2022
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Neuro-Oncology Advances, Oxford University Press (OUP), Vol. 3, No. Supplement_3 ( 2021-08-09), p. iii2-iii3
    Abstract: Brain metastases represent a common complication of lung cancer and dramatically limit prognosis in affected patients. The influence of tumor-associated macrophages and microglia (TAM/M) and their receptor CX3CR1 on different steps of brain metastasis formation from lung cancer is poorly characterized, but might be of therapeutic relevance. Methods We established an orthotopic cerebral metastasis model using CX3CR1-proficient (CX3CR1GFP/wt) and -deficient (CX3CR1GFP/GFP) mice with green-fluorescent TAM/M. A cranial window was prepared, and intracarotid injection of red-fluorescent Lewis Lung Carcinoma-cells (tdtLLC) was performed two weeks later. Formation of brain metastases was followed by repetitive two-photon laser scanning microscopy. Results After intracarotid injection, intravascular tumor cells extravasated into the cerebral parenchyma and eventually formed micrometastases (≤50 cells) and mature macrometastases ( & gt;50 cells). We observed phagocytosis of extravasated tumor cells by TAM/M during early steps of metastatic growth. Notably, these anti-tumor effects of TAM/M diminished during later steps of metastasis formation and were accompanied by TAM/M accumulation and activation. CX3CR1-deficiency resulted in a lower number of extravasated tumor cells, and only a small number of TAM/M were visualized during early steps of metastasis formation (extravasation, formation of micrometastases) in such mice. In contrast, progression of extravasated tumor cells into micrometastases was more frequently found in CX3CR1-deficient mice. Overall, these mechanisms resulted in a comparable number of mature macrometastases between CX3CR1-deficient and -proficient mice. Conclusion Our findings indicate that unspecific inhibition of CX3CR1 might not be a suitable therapeutic approach to prevent cerebral dissemination of lung cancer cells. Given the close interaction between TAM/M and tumour cells during metastasis formation, other therapeutic approaches targeting TAM/M function warrant evaluation. Such concepts might be evaluated in vivo using the herein established orthotopic mouse model.
    Type of Medium: Online Resource
    ISSN: 2632-2498
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 3009682-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 23, No. Supplement_6 ( 2021-11-12), p. vi198-vi198
    Abstract: Brain metastases dramatically limit prognosis of lung cancer patients. Unlike systemic disease, brain metastases from lung cancer poorly respond to checkpoint-inhibition therapy. Targeting the immunosuppressive tumor-associated macrophages and microglia (TAM/M) and their receptor CSF1R may increase efficacy of checkpoint-inhibitors. METHODS Cranial windows were prepared in fully immunocompetent, transgenic CX3CR1GFP/wt-mice with green-fluorescent TAM/M. Intracranial injection of red-fluorescent Lewis Lung Carcinoma-cells was performed, and mice received one of the following three treatments: PD1-inhibition only (n = 8); PD1-inhibition combined with an anti-CSF1R-antibody (exhibiting limited blood-brain-barrier permeability under physiologic conditions, n = 8); or PD1-inhibition combined with a small molecular CSF1R-inhibitor (exhibiting high blood-brain-barrier permeability, n = 7). Tumor growth and TAM/M were followed by repetitive two-photon laser-scanning-microscopy over weeks. RESULTS Following intracranial injection, metastases were detected in all three treatment groups within eight days. In mice receiving PD1-inhibition only, metastases showed exponential growth which was paralleled by intra- and peritumoral accumulation of TAM/M. Treatment with an anti-CSF1R-antibody resulted in significantly lower numbers of intratumoral TAM/M given increased tumoral blood-brain-barrier permeability, but did not substantially affect peritumoral TAM/M or TAM/M localized in the healthy contralateral hemisphere. In contrast, treatment with a small molecular CSF1R-inhibitor not only reduced the number of intratumoral TAM/M, but also of peritumoral and contralateral TAM/M. Compared to PD1-inhibition only, the addition of either an anti-CSF1R-antibody or a small molecular CSF1R-inhibitor resulted in decreased tumor growth (tumor size on day 12: 8.3 mm2 (PD1-inhibition only) versus 0.9 mm2 (PD1-inhibition + anti-CSF1R-antibody) versus 2.5 mm2 (PD1-inhibition + small molecular CSF1R-inhibitor)) (p = 0.01). The beneficial effects of the small molecular CSF1R-inhibitor in reducing tumor growth were similar to those of the anti-CSF1R-antibody. CONCLUSION Targeting intratumoral TAM/M using CSF1-inhibition may increase the efficacy of checkpoint-inhibition therapy for cerebral lung cancer metastases. This approach warrants further evaluation in preclinical and clinical studies.
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Acta Neurochirurgica, Springer Science and Business Media LLC, Vol. 165, No. 4 ( 2023-03-02), p. 1053-1064
    Abstract: Supratentorial intraventricular tumors (SIVTs) are rare lesions of various entities characteristically presenting with hydrocephalus and often posing a surgical challenge due to their deep-seated localization. We aimed to elaborate on shunt dependency after tumor resection, clinical characteristics, and perioperative morbidity. Methods We retrospectively searched the institutional database for patients with supratentorial intraventricular tumors treated at the Department of Neurosurgery of the Ludwig-Maximilians-University in Munich, Germany, between 2014 and 2022. Results We identified 59 patients with over 20 different SIVT entities, most often subependymoma (8/59 patients, 14%). Mean age at diagnosis was 41 ± 3 years. Hydrocephalus and visual symptoms were observed in 37/59 (63%) and 10/59 (17%) patients, respectively. Microsurgical tumor resection was provided in 46/59 patients (78%) with complete resection in 33/46 patients (72%). Persistent postoperative neurological deficits were encountered in 3/46 patients (7%) and generally mild in nature. Complete tumor resection was associated with less permanent shunting in comparison to incomplete tumor resection, irrespective of tumor histology (6% versus 31%, p  = 0.025). Stereotactic biopsy was utilized in 13/59 patients (22%), including 5 patients who received synchronous internal shunt implantation for symptomatic hydrocephalus. Median overall survival was not reached and did not differ between patients with or without open resection. Conclusions SIVT patients display a high risk of developing hydrocephalus and visual symptoms. Complete resection of SIVTs can often be achieved, preventing the need for long-term shunting. Stereotactic biopsy along with internal shunting represents an effective approach to establish diagnosis and ameliorate symptoms if resection cannot be safely performed. Due to the rather benign histology, the outcome appears excellent when adjuvant therapy is provided.
    Type of Medium: Online Resource
    ISSN: 0942-0940
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 1464215-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Frontiers in Medicine, Frontiers Media SA, Vol. 9 ( 2022-10-17)
    Abstract: The 18 kDa translocator protein (TSPO) receives growing interest as a biomarker in glioblastoma. Mouse models can serve as an important tool for the investigation of biomarkers in glioblastoma, but several glioblastoma models indicated only low TSPO-PET signals in contrast to high TSPO-PET signals of human glioblastoma. Thus, we aimed to investigate TSPO-PET imaging in the syngeneic immunocompetent SB28 mouse model, which is thought to closely represent the tumor microenvironment (TME) of human glioblastoma. Methods Dynamic TSPO-PET/CT imaging was performed for 60 min after injection of 13.6 ± 4.2 MBq [ 18 F]GE-180. Contrast enhanced CT (ceCT) was acquired prior to PET and served for assessment of tumor volumes and attenuation correction. SB28 and sham mice were imaged at an early (week-1; n = 6 SB28, n = 6 sham) and a late time-point (week-3; n = 8 SB28, n = 9 sham) after inoculation. Standard of truth ex vivo tumor volumes were obtained for SB28 mice at the late time-point. Tracer kinetics were analyzed for the lesion site and the carotid arteries to establish an image derived input function (IDIF). TSPO-PET and ceCT lesion volumes were compared with ex vivo volumes by calculation of root-mean-square-errors (RMSE). Volumes of distribution (VTmax/mean) in the lesion were calculated using carotid IDIF and standardized uptake values (SUVmax/mean) were obtained for a 40–60 min time frame. Results Higher uptake rate constants (K1) were observed for week-1 SB28 tumor lesions when compared to week-3 SB28 tumor lesions. Highest agreement between TSPO-PET lesion volumes and ex vivo tumor volumes was achieved with a 50% maximum threshold (RMSE-VT: 39.7%; RMSE-SUV: 34.4%), similar to the agreement of ceCT tumor volumes (RMSE: 30.1%). Lesions of SB28 mice had higher PET signal when compared to sham mice at week-1 (VTmax 6.6 ± 2.9 vs. 3.9 ± 0.8, p = 0.035; SUVmax 2.3 ± 0.5 vs. 1.2 ± 0.1, p & lt; 0.001) and PET signals remained at a similar level at week-3 (VTmax 5.0 ± 1.6 vs. 2.7 ± 0.8, p = 0.029; SUVmax 1.9 ± 0.5 vs. 1.2 ± 0.2, p = 0.0012). VTmax correlated with SUVmax ( R 2 = 0.532, p & lt; 0.001). Conclusion TSPO-PET imaging of immunocompetent SB28 mice facilitates early detection of tumor signals over sham lesions. SB28 tumors mirror high TSPO-PET signals of human glioblastoma and could serve as a valuable translational model to study TSPO as an imaging biomarker.
    Type of Medium: Online Resource
    ISSN: 2296-858X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2775999-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 24, No. Supplement_7 ( 2022-11-14), p. vii208-vii209
    Abstract: Lung cancer patients are at a high risk for brain metastases, and affected patients frequently succumb to their intracranial disease. Chimeric Antigen Receptor (CAR) T-cells emerged as a powerful cell-based immunotherapy for hematological malignancies; however, it remains unclear whether CAR T-cells represent a viable therapeutic avenue for brain metastases. METHODS A fully immunocompetent, orthotopic cerebral metastasis model was established in mice by combining a chronic cranial window with repetitive intracerebral two-photon laser scanning microscopy. This approach enabled the in vivo-characterization of fluorescent CAR T-cells and tumor cells on a single-cell level over weeks. Intraparenchymal injection of EpCAM-expressing Lewis lung carcinoma cells was performed, and EpCAM-directed CAR T-cells (EpCAMCAR T-cells) were injected into the adjacent brain parenchyma after brain tumor formation. RESULTS All mice had visible tumor take with rapidly growing lesions following intracranial tumor cell injection. In mice treated with EpCAMCAR T-cells, we observed substantial CAR T-cell accumulation within the tumor compared to controls treated with undirected T-cells. This was paralleled by lower velocities of EpCAMCAR T-cells, characterizing antitumor cytotoxicity due to ‘immune cell’-‘tumor cell’ contacts. Consequently, treatment with EpCAMCAR T-cells resulted in reduced tumorous growth as determined per in vivo-microscopy (median tumor area on day 10: 1.8 versus 10.8 mm2; p=0.001) and immunohistochemistry of excised brains. However, the number of intratumoral EpCAMCAR T-cells within the tumor markedly decreased during the observation period, pointing towards insufficient persistence. Accordingly, survival was prolonged in mice receiving EpCAMCAR T-cells but long-lasting remission was rare (median survival: 15 versus 13 days; p=0.012). No CNS-specific or systemic toxicities of EpCAMCAR T-cells were encountered. CONCLUSION Our findings indicate that EpCAMCAR T-cells injected into the cerebral parenchyma may safely induce relevant anti-tumor effects in brain metastases from lung cancer. Strategies improving the CAR T-cell persistence within brain metastases are warranted to further boost the therapeutic success.
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancers, MDPI AG, Vol. 13, No. 10 ( 2021-05-20), p. 2503-
    Abstract: Primary CNS lymphomas (PCNSL) represent a group of extranodal non-Hodgkin lymphomas and secondary CNS lymphomas refer to secondary involvement of the neuroaxis by systemic disease. CNS lymphomas are associated with limited prognosis even after aggressive multimodal therapy. Chimeric antigen receptor (CAR) T-cells have proven as a promising therapeutic avenue in hematological B-cell malignancies including diffuse large B-cell lymphoma, B-cell acute lymphoblastic leukemia, and mantle-cell lymphoma. CARs endow an autologous T-cell population with MHC-unrestricted effectivity against tumor target antigens such as the pan B-cell marker CD19. In PCNSL, compelling and long-lasting anti-tumor effects of such therapy have been shown in murine immunocompromised models. In clinical studies on CAR T-cells for CNS lymphoma, only limited data are available and often include both patients with PCNSL but also patients with secondary CNS lymphoma. Several clinical trials on CAR T-cell therapy for primary and secondary CNS lymphoma are currently ongoing. Extrapolated from the available preliminary data, an overall acceptable safety profile with considerable anti-tumor effects might be expected. Whether these beneficial anti-tumor effects are as long-lasting as in animal models is currently in doubt; and the immunosuppressive tumor microenvironment of the brain may be among the most pivotal factors limiting efficacy of CAR T-cell therapy in CNS lymphoma. Based on an increasing understanding of CAR T-cell interactions with the tumor cells as well as the cerebral tissue, modifications of CAR design or the combination of CAR T-cell therapy with other therapeutic approaches may aid to release the full therapeutic efficiency of CAR T-cells. CAR T-cells may therefore emerge as a novel treatment strategy in primary and secondary CNS lymphoma.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 24, No. Supplement_7 ( 2022-11-14), p. vii175-vii175
    Abstract: Glioblastoma combines a lack of immunogenicity with a highly immunosuppressive tumor microenvironment (TME), including both tumor and immune cells. However, biomarkers that allow monitoring of the immune phenotype are still lacking. Hence, we investigated the 18kDa translocator protein (TSPO) during tumor progression in an experiential glioblastoma mouse model (SB28) mimicking human TME. We used TSPO-PET imaging ([18F]GE-180) and in vivo measures of single cell tracer uptake between days 6 and 18 after inoculation to study alterations and dependence of TSPO in tumor and peripheral organs in SB28 mice (n= 27) in comparison to sham controls (n= 11). CSF1R inhibition was applied to deplete tumor associated microglia/macrophages (TAM) followed by withdrawal to induce immune cell rebound (PLX5622 day -20 to day 6, n= 3). Compared to sham, TSPO-PET signals were distinctly elevated in tumor (+83%, p & lt; 0.001), heart (+35%, p & lt; 0.05), lung (+42%, p & lt; 0.01) and bone (+26%, p & lt; 0.05) of SB28 mice at day 6. TSPO-PET increases were lower at day 18 (tumor: +52%, p & lt; 0.05; all organs & lt; +15%, n.s.). The tumor TSPO-PET signal was strongly coupled with TSPO-PET signal in peripheral organs (all R≥ 0.88, all p & lt; 0.001). Single tumor cells and TAM showed strong early increases of TSPO tracer uptake at day 6 (tumor: 32-fold, TAM: 8.5-fold) and a decline of these increases at day 18 (tumor: 2.4-fold, TAM: 1.7-fold) when compared to sham microglia. Immune cell rebound restored TSPO tracer uptake in TAM (+120%, p & lt; 0.01) but not in tumor cells (-24%, n.s.) when compared to therapy-naïve SB28 mice. TSPO declines in tumor cells and TAM during progression of experimental glioblastoma. TSPO in peripheral organs could serve as a supportive indicator of declining immune response in glioblastoma. CSF1R inhibition and reinitiation yields specific restoring of TSPO in TAM and could serve as immunomodulatory therapy strategy.
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: OncoImmunology, Informa UK Limited, Vol. 12, No. 1 ( 2023-12-31)
    Type of Medium: Online Resource
    ISSN: 2162-402X
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2023
    detail.hit.zdb_id: 2645309-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Neuro-Oncology Advances, Oxford University Press (OUP), Vol. 5, No. 1 ( 2023-01-01)
    Abstract: Targeted therapies have substantially improved survival in cancer patients with malignancies outside the brain. Whether in-depth analysis for molecular alterations may also offer therapeutic avenues in primary brain tumors remains unclear. We herein present our institutional experience for glioma patients discussed in our interdisciplinary molecular tumor board (MTB) implemented at the Comprehensive Cancer Center Munich (LMU). Methods We retrospectively searched the database of the MTB for all recurrent glioma patients after previous therapy. Recommendations were based on next-generation sequencing results of individual patient’s tumor tissue. Clinical and molecular information, previous therapy regimens, and outcome parameters were collected. Results Overall, 73 consecutive recurrent glioma patients were identified. In the median, advanced molecular testing was initiated with the third tumor recurrence. The median turnaround time between initiation of molecular profiling and MTB case discussion was 48 ± 75 days (range: 32–536 days). Targetable mutations were found for 50 recurrent glioma patients (68.5%). IDH1 mutation (27/73; 37%), epidermal growth factor receptor amplification (19/73; 26%), and NF1 mutation (8/73; 11%) were the most detected alterations and a molecular-based treatment recommendation could be made for all of them. Therapeutic recommendations were implemented in 12 cases (24%) and one-third of these heavily pretreated patients experienced clinical benefit with at least disease stabilization. Conclusions In-depth molecular analysis of tumor tissue may guide targeted therapy also in brain tumor patients and considerable antitumor effects might be observed in selected cases. However, future studies to corroborate our results are needed.
    Type of Medium: Online Resource
    ISSN: 2632-2498
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 3009682-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...