GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Bleckmann, Horst  (3)
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  Journal of Comparative Physiology A Vol. 206, No. 4 ( 2020-07), p. 517-526
    In: Journal of Comparative Physiology A, Springer Science and Business Media LLC, Vol. 206, No. 4 ( 2020-07), p. 517-526
    Abstract: The Australian water rat, Hydromys chrysogaster , preys on a wide variety of aquatic and semiaquatic arthropods and vertebrates, including fish. A frequently observed predatory strategy of Hydromys is sitting in wait at the water's edge with parts of its vibrissae submersed. Here we show that Hydromys can detect water motions with its whiskers. Behavioural thresholds range from 1.0 to 9.4 mm s −1 water velocity, based on maximal horizontal water velocity in the area covered by the whiskers. This high sensitivity to water motions would enable Hydromys to detect fishes passing by. No responses to surface waves generated by a vibrating rod and resembling the surface waves caused by struggling insects were found.
    Type of Medium: Online Resource
    ISSN: 0340-7594 , 1432-1351
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 1459295-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2001
    In:  Science Vol. 293, No. 5527 ( 2001-07-06), p. 102-104
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 293, No. 5527 ( 2001-07-06), p. 102-104
    Abstract: Marine mammals often forage in dark or turbid waters. Whereas dolphins use echolocation under such conditions, pinnipeds apparently lack this sensory ability. For seals hunting in the dark, one source of sensory information may consist of fish-generated water movements, which seals can detect with their highly sensitive whiskers. Water movements in the wake of fishes persist for several minutes. Here we show that blindfolded seals can use their whiskers to detect and accurately follow hydrodynamic trails generated by a miniature submarine. This shows that hydrodynamic information can be used for long-distance prey location.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2001
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 1998
    In:  Nature Vol. 394, No. 6690 ( 1998-7), p. 235-236
    In: Nature, Springer Science and Business Media LLC, Vol. 394, No. 6690 ( 1998-7), p. 235-236
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 1998
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...