GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2021-03-11)
    Kurzfassung: In nature, photoperiod signals environmental seasonality and is a strong selective “zeitgeber” that synchronizes biological rhythms. For animals facing seasonal environmental challenges and energetic bottlenecks, daily torpor and hibernation are two metabolic strategies that can save energy. In the wild, the dwarf lemurs of Madagascar are obligate hibernators, hibernating between 3 and 7 months a year. In captivity, however, dwarf lemurs generally express torpor for periods far shorter than the hibernation season in Madagascar. We investigated whether fat-tailed dwarf lemurs ( Cheirogaleus medius ) housed at the Duke Lemur Center (DLC) could hibernate, by subjecting 8 individuals to husbandry conditions more in accord with those in Madagascar, including alternating photoperiods, low ambient temperatures, and food restriction. All dwarf lemurs displayed daily and multiday torpor bouts, including bouts lasting ~ 11 days. Ambient temperature was the greatest predictor of torpor bout duration, and food ingestion and night length also played a role. Unlike their wild counterparts, who rarely leave their hibernacula and do not feed during hibernation, DLC dwarf lemurs sporadically moved and ate. While demonstrating that captive dwarf lemurs are physiologically capable of hibernation, we argue that facilitating their hibernation serves both husbandry and research goals: first, it enables lemurs to express the biphasic phenotypes (fattening and fat depletion) that are characteristic of their wild conspecifics; second, by “renaturalizing” dwarf lemurs in captivity, they will emerge a better model for understanding both metabolic extremes in primates generally and metabolic disorders in humans specifically.
    Materialart: Online-Ressource
    ISSN: 2045-2322
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2021
    ZDB Id: 2615211-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    University of Chicago Press ; 2022
    In:  Physiological and Biochemical Zoology Vol. 95, No. 2 ( 2022-03-01), p. 122-129
    In: Physiological and Biochemical Zoology, University of Chicago Press, Vol. 95, No. 2 ( 2022-03-01), p. 122-129
    Materialart: Online-Ressource
    ISSN: 1522-2152 , 1537-5293
    Sprache: Englisch
    Verlag: University of Chicago Press
    Publikationsdatum: 2022
    ZDB Id: 1473845-4
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Frontiers Media SA ; 2023
    In:  Frontiers in Physiology Vol. 14 ( 2023-9-7)
    In: Frontiers in Physiology, Frontiers Media SA, Vol. 14 ( 2023-9-7)
    Kurzfassung: Feast-fast cycles allow animals to live in seasonal environments by promoting fat storage when food is plentiful and lipolysis when food is scarce. Fat-storing hibernators have mastered this cycle over a circannual schedule, by undergoing extreme fattening to stockpile fuel for the ensuing hibernation season. Insulin is intrinsic to carbohydrate and lipid metabolism and is central to regulating feast-fast cycles in mammalian hibernators. Here, we examine glucose and insulin dynamics across the feast-fast cycle in fat-tailed dwarf lemurs, the only obligate hibernator among primates. Unlike cold-adapted hibernators, dwarf lemurs inhabit tropical forests in Madagascar and hibernate under various temperature conditions. Using the captive colony at the Duke Lemur Center, we determined fasting glucose and insulin, and glucose tolerance, in dwarf lemurs across seasons. During the lean season, we maintained dwarf lemurs under stable warm, stable cold, or fluctuating ambient temperatures that variably included food provisioning or deprivation. Overall, we find that dwarf lemurs can show signatures of reversible, lean-season insulin resistance. During the fattening season prior to hibernation, dwarf lemurs had low glucose, insulin, and HOMA-IR despite consuming high-sugar diets. In the active season after hibernation, glucose, insulin, HOMA-IR, and glucose tolerance all increased, highlighting the metabolic processes at play during periods of weight gain versus weight loss. During the lean season, glucose remained low, but insulin and HOMA-IR increased, particularly in animals kept under warm conditions with daily food. Moreover, these lemurs had the greatest glucose intolerance in our study and had average HOMA-IR values consistent with insulin resistance (5.49), while those without food under cold (1.95) or fluctuating (1.17) temperatures did not. Remarkably low insulin in dwarf lemurs under fluctuating temperatures raises new questions about lipid metabolism when animals can passively warm and cool rather than undergo sporadic arousals. Our results underscore that seasonal changes in insulin and glucose tolerance are likely hallmarks of hibernating mammals. Because dwarf lemurs can hibernate under a range of conditions in captivity, they are an emerging model for primate metabolic flexibility with implications for human health.
    Materialart: Online-Ressource
    ISSN: 1664-042X
    Sprache: Unbekannt
    Verlag: Frontiers Media SA
    Publikationsdatum: 2023
    ZDB Id: 2564217-0
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    The Royal Society ; 2016
    In:  Royal Society Open Science Vol. 3, No. 8 ( 2016-08), p. 160282-
    In: Royal Society Open Science, The Royal Society, Vol. 3, No. 8 ( 2016-08), p. 160282-
    Kurzfassung: During hibernation, critical physiological processes are downregulated and thermogenically induced arousals are presumably needed periodically to fulfil those physiological demands. Among the processes incompatible with a hypome tabolic state is sleep. However, one hibernating primate, the dwarf lemur Cheirogaleus medius , experiences rapid eye movement (REM)-like states during hibernation, whenever passively reaching temperatures above 30°C, as occurs when it hibernates in poorly insulated tree hollows under tropical conditions. Here, we report electroencephalographic (EEG) recordings, temperature data and metabolic rates from two related species ( C. crossleyi and C. sibreei ), inhabiting high-altitude rainforests and hibernating underground, conditions that mirror, to some extent, those experienced by temperate hibernators. We compared the physiology of hibernation and spontaneous arousals in these animals to C. medius , as well as the much more distantly related non-primate hibernators, such as Arctic, golden-mantled and European ground squirrels. We observed a number of commonalities with non-primate temperate hibernators including: (i) monotonous ultra-low voltage EEG during torpor bouts in these relatively cold-weather hibernators, (ii) the absence of sleep during torpor bouts, (iii) the occurrence of spontaneous arousals out of torpor, during which sleep regularly occurred, (iv) relatively high early EEG non-REM during the arousal, and (v) a gradual transition to the torpid EEG state from non-REM sleep. Unlike C. medius , our study species did not display sleep-like states during torpor bouts, but instead exclusively exhibited them during arousals. During these short euthermic periods, non-REM as well as REM sleep-like stages were observed. Differences observed between these two species and their close relative, C. medius , for which data have been published, presumably reflect differences in hibernaculum temperature.
    Materialart: Online-Ressource
    ISSN: 2054-5703
    Sprache: Englisch
    Verlag: The Royal Society
    Publikationsdatum: 2016
    ZDB Id: 2787755-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...