GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 675 ( 2023-07), p. A78-
    Abstract: We analyse cold-gas distributions in Virgo cluster galaxies using resolved observations of CO(2-1), which traces molecular hydrogen (H 2 ), and H  I from the Virgo Environment Traced In CO (VERTICO) and VLA Imaging of Virgo in Atomic Gas (VIVA) surveys. From a theoretical perspective, it is expected that environmental processes in clusters will have a stronger influence on diffuse atomic gas compared to the relatively dense molecular gas component, and that these environmental perturbations can compress the cold interstellar medium in cluster galaxies, leading to elevated star formation. In this work we observationally test these predictions for star-forming satellite galaxies within the Virgo cluster. We divided our Virgo galaxy sample into H  I -normal, H  I -tailed, and H  I -truncated classes and show, unsurprisingly, that the H  I -tailed galaxies have the largest quantitative H  I asymmetries. We also compared Virgo galaxies to a control sample of non-cluster galaxies and find that the former, on average, have H  I asymmetries that are 40 ± 10% larger than the latter. There is less separation between control, H  I -normal, H  I -tailed, and H  I -truncated galaxies in terms of H 2 asymmetries, and on average, Virgo galaxies have H 2 asymmetries that are only marginally (20 ± 10%) larger than the control sample. We find a weak correlation between H  I and H 2 asymmetries over our entire sample, but a stronger correlation for the galaxies that are strongly impacted by environmental perturbations. Finally, we divided the discs of the H  I -tailed Virgo galaxies into a leading half and trailing half according to the observed tail direction. We find evidence for excess molecular gas mass on the leading halves of the disc. This excess molecular gas is accompanied by an excess in the star formation rate such that the depletion time is, on average, unchanged.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Astrophysical Journal Supplement Series, American Astronomical Society, Vol. 257, No. 2 ( 2021-12-01), p. 21-
    Type of Medium: Online Resource
    ISSN: 0067-0049 , 1538-4365
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2021
    detail.hit.zdb_id: 2006860-8
    detail.hit.zdb_id: 2207650-5
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: The Astrophysical Journal, American Astronomical Society, Vol. 956, No. 1 ( 2023-10-01), p. 37-
    Abstract: We study how environment regulates the star formation cycle of 33 Virgo Cluster satellite galaxies on 720 pc scales. We present the resolved star-forming main sequence for cluster galaxies, dividing the sample based on their global H i properties and comparing to a control sample of field galaxies. H i –poor cluster galaxies have reduced star formation rate (SFR) surface densities with respect to both H i –normal cluster and field galaxies (∼0.5 dex), suggesting that mechanisms regulating the global H i content are responsible for quenching local star formation. We demonstrate that the observed quenching in H i –poor galaxies is caused by environmental processes such as ram pressure stripping (RPS), simultaneously reducing the molecular gas surface density and star formation efficiency (SFE) compared to regions in H i –normal systems (by 0.38 and 0.22 dex, respectively). We observe systematically elevated SFRs that are driven by increased molecular gas surface densities at fixed stellar mass surface density in the outskirts of early stage RPS galaxies, while SFE remains unchanged with respect to the field sample. We quantify how RPS and starvation affect the star formation cycle of inner and outer galaxy disks as they are processed by the cluster. We show both are effective quenching mechanisms, with the key difference being that RPS acts upon the galaxy outskirts while starvation regulates the star formation cycle throughout disk, including within the truncation radius. For both processes, the quenching is caused by a simultaneous reduction in the molecular gas surface densities and SFE at fixed stellar mass surface density.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 671 ( 2023-03), p. A3-
    Abstract: Aims. In this Virgo Environment Traced in CO (VERTICO) science paper, we aim to study how the star formation process depends on the galactic environment and gravitational interactions in the context of galaxy evolution. We explore the scaling relation between the star formation rate surface density (Σ SFR ) and the molecular gas surface density (Σ mol ), also known as the Kennicutt-Schmidt relation, in a subsample of Virgo cluster spiral galaxies. Methods. We used new Atacama Compact Array and Total Power (ACA+TP) observations from the VERTICO-Atacama Large Millimeter/submillimeter Array (ALMA) Large Program at 720 pc resolution to resolve the molecular gas content, as traced by the 12 CO (2 − 1) transition, across the disks of 37 spiral galaxies in the Virgo cluster. In combination with archival UV and IR observations used to determine the star formation rate (SFR), we estimated the parameters of the Kennicutt-Schmidt (KS) relation for the entire ensemble of galaxies, and within individual galaxies. Results. We find the KS slope for the entire population to be N  = 0.97 ± 0.07, with a characteristic molecular gas depletion time of 1.86 Gyr for our full sample, which is in agreement with previous work in isolated, nearby star-forming galaxies. In individual galaxies, we find that the KS slope ranges between 0.69 and 1.40, and that typical star formation efficiencies of molecular gas can vary from galaxy to galaxy by a factor of ∼4. These galaxy-to-galaxy variations account for ∼0.20 dex in scatter in the ensemble KS relation, which is characterized by a 0.42 dex scatter. In addition, we find that the HI-deficient galaxies in the Virgo cluster show a steeper resolved KS relation and lower molecular gas efficiencies than HI-normal cluster galaxies. Conclusions. While the molecular gas content in galaxies residing in the Virgo cluster appears – to first order – to behave similarly to that in isolated galaxies, our VERTICO sample of galaxies shows that cluster environments play a key role in regulating star formation. The environmental mechanisms affecting the HI galaxy content also have a direct impact on the star formation efficiency of molecular gas in cluster galaxies, leading to longer depletion times in HI-deficient members.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Publications of the Astronomical Society of Australia, Cambridge University Press (CUP), Vol. 40 ( 2023)
    Abstract: The quenching of cluster satellite galaxies is inextricably linked to the suppression of their cold interstellar medium (ISM) by environmental mechanisms. While the removal of neutral atomic hydrogen (H i ) at large radii is well studied, how the environment impacts the remaining gas in the centres of galaxies, which are dominated by molecular gas, is less clear. Using new observations from the Virgo Environment traced in CO survey (VERTICO) and archival H i data, we study the H i and molecular gas within the optical discs of Virgo cluster galaxies on 1.2-kpc scales with spatially resolved scaling relations between stellar ( $\Sigma_{\star}$ ), H i ( $\Sigma_{\text{H}\,{\small\text{I}}}$ ), and molecular gas ( $\Sigma_{\text{mol}}$ ) surface densities. Adopting H i deficiency as a measure of environmental impact, we find evidence that, in addition to removing the H i at large radii, the cluster processes also lower the average $\Sigma_{\text{H}\,{\small\text{I}}}$ of the remaining gas even in the central $1.2\,$ kpc. The impact on molecular gas is comparatively weaker than on the H i , and we show that the lower $\Sigma_{\text{mol}}$ gas is removed first. In the most H i -deficient galaxies, however, we find evidence that environmental processes reduce the typical $\Sigma_{\text{mol}}$ of the remaining gas by nearly a factor of 3. We find no evidence for environment-driven elevation of $\Sigma_{\text{H}\,{\small\text{I}}}$ or $\Sigma_{\text{mol}}$ in H i -deficient galaxies. Using the ratio of $\Sigma_{\text{mol}}$ -to- $\Sigma_{\text{H}\,{\small\text{I}}}$ in individual regions, we show that changes in the ISM physical conditions, estimated using the total gas surface density and midplane hydrostatic pressure, cannot explain the observed reduction in molecular gas content. Instead, we suggest that direct stripping of the molecular gas is required to explain our results.
    Type of Medium: Online Resource
    ISSN: 1323-3580 , 1448-6083
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2560489-2
    detail.hit.zdb_id: 2079225-6
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...