GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Betini, Gustavo S.  (2)
  • 2020-2024  (2)
Material
Publisher
Person/Organisation
Language
Years
  • 2020-2024  (2)
Year
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Wiley ; 2020
    In:  Journal of Animal Ecology Vol. 89, No. 12 ( 2020-12), p. 2777-2787
    In: Journal of Animal Ecology, Wiley, Vol. 89, No. 12 ( 2020-12), p. 2777-2787
    Abstract: Despite being widely used, habitat selection models are rarely reliable and informative when applied across different ecosystems or over time. One possible explanation is that habitat selection is context‐dependent due to variation in consumer density and/or resource availability. The goal of this paper is to provide a general theoretical perspective on the contributory mechanisms of consumer and resource density‐dependent habitat selection, as well as on our capacity to account for their effects. Towards this goal we revisit the ideal free distribution (IFD), where consumers are assumed to be omniscient, equally competitive and freely moving, and are hence expected to instantaneously distribute themselves across a heterogeneous landscape such that fitness is equalised across the population. Although these assumptions are clearly unrealistic to some degree, the simplicity of the structure in IFD provides a useful theoretical vantage point to help clarify our understanding of more complex spatial processes. Of equal importance, IFD assumptions are compatible with the assumptions underlying common habitat selection models. Here we show how a fitness‐maximising space use model, based on IFD, gives rise to resource and consumer density‐dependent shifts in consumer distribution, providing a mechanistic explanation for the context‐dependent outcomes often reported in habitat selection analysis. Our model suggests that adaptive shifts in consumer distribution patterns would be expected to lead to nonlinear and often non‐monotonic patterns of habitat selection. These results indicate that even under the simplest of assumptions about adaptive organismal behaviour, habitat selection strength should critically depend on system‐wide characteristics. Clarifying the impact of adaptive behavioural responses may be pivotal in making meaningful ecological inferences about observed patterns of habitat selection and allow reliable transferability of habitat selection predictions across time and space.
    Type of Medium: Online Resource
    ISSN: 0021-8790 , 1365-2656
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2006616-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Ecology and Evolution, Wiley, Vol. 10, No. 2 ( 2020-01), p. 756-762
    Abstract: Reduced body size and accelerated life cycle due to warming are considered major ecological responses to climate change with fitness costs at the individual level. Surprisingly, we know little about how relevant ecological factors can alter these life history trade‐offs and their consequences for individual fitness. Here, we show that food modulates temperature‐dependent effects on body size in the water flea Daphnia magna and interacts with temperature to affect life history parameters. We exposed 412 individuals to a factorial manipulation of food abundance and temperature, tracked each reproductive event, and took daily measurements of body size from each individual. High temperature caused a reduction in maximum body size in both food treatments, but this effect was mediated by food abundance, such that low food conditions resulted in a reduction of 20% in maximum body size, compared with a reduction of 4% under high food conditions. High temperature resulted in an accelerated life cycle, with pronounced fitness cost at low levels of food where only a few individuals produced a clutch. These results suggest that the mechanisms affecting the trade‐off between fast growth and final body size are food‐dependent, and that the combination of low levels of food and high temperature could potentially threaten viability of ectotherms.
    Type of Medium: Online Resource
    ISSN: 2045-7758 , 2045-7758
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2635675-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...