GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Berman, Jeremy D.  (3)
Material
Person/Organisation
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2017
    In:  Monthly Weather Review Vol. 145, No. 6 ( 2017-06-01), p. 2141-2163
    In: Monthly Weather Review, American Meteorological Society, Vol. 145, No. 6 ( 2017-06-01), p. 2141-2163
    Abstract: The role of earlier forecast errors on subsequent convection forecasts is evaluated for a northern Great Plains severe convective event on 11–12 June 2013 during the Mesoscale Predictability Experiment (MPEX) by applying the ensemble-based sensitivity technique to Weather Research and Forecasting (WRF) Model ensemble forecasts with explicit convection. This case was characterized by two distinct modes of convection located 150 km apart in western Nebraska and South Dakota, which formed on either side of an axis of high, lower-tropospheric equivalent potential temperature . Convection forecasts over both regions are found to be sensitive to the position of this axis. The convection in Nebraska is sensitive to the position of the western edge of the axis near an upstream dryline, which modulates the preconvective prior to the diurnal maximum. In contrast, the convection in South Dakota is sensitive to the position of the eastern edge of the axis near a cold front, which also modulates the preconvective in that location. The position of the axis is modulated by the positions of both upstream and downstream mid- to upper-tropospheric potential vorticity anomalies, and can be traced backward in time to the initial conditions. Dropsondes sampling the region prior to convective initiation indicate that ensemble members with better representations of upstream conditions in sensitive regions are associated with better convective forecasts over Nebraska.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Monthly Weather Review Vol. 147, No. 11 ( 2019-11-01), p. 4071-4089
    In: Monthly Weather Review, American Meteorological Society, Vol. 147, No. 11 ( 2019-11-01), p. 4071-4089
    Abstract: Perturbations to the potential vorticity (PV) waveguide, which can result from latent heat release within the warm conveyor belt (WCB) of midlatitude cyclones, can lead to the downstream radiation of Rossby waves, and in turn high-impact weather events. Previous studies have hypothesized that forecast uncertainty associated with diabatic heating in WCBs can result in large downstream forecast variability; however, these studies have not established a direct connection between the two. This study evaluates the potential impact of latent heating variability in the WCB on subsequent downstream forecasts by applying the ensemble-based sensitivity method to European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble forecasts of a cyclogenesis event over the North Atlantic. For this case, ensemble members with a more amplified ridge are associated with greater negative PV advection by the irrotational wind, which is associated with stronger lower-tropospheric southerly moisture transport east of the upstream cyclone in the WCB. This transport is sensitive to the pressure trough to the south of the cyclone along the cold front, which in turn is modulated by earlier differences in the motion of the air masses on either side of the front. The position of the cold air behind the front is modulated by upstream tropopause-based PV anomalies, such that a deeper pressure trough is associated with a more progressive flow pattern, originating from Rossby wave breaking over the North Pacific. Overall, these results suggest that more accurate forecasts of upstream PV anomalies and WCBs may reduce forecast uncertainty in the downstream waveguide.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2022
    In:  Monthly Weather Review Vol. 150, No. 10 ( 2022-10), p. 2573-2592
    In: Monthly Weather Review, American Meteorological Society, Vol. 150, No. 10 ( 2022-10), p. 2573-2592
    Abstract: One potential way to improve the skill of medium-range weather forecasts is to improve the evolution of Rossby waves, which largely modulate extratropical weather. Recent research has hypothesized that the predictability of downstream Rossby waves may be limited by forecast uncertainty linked to upstream diabatic processes such as latent heat release within the warm conveyor belt (WCB) of extratropical cyclones. This hypothesis is evaluated using Model for Prediction Across Scales (MPAS) ensemble forecasts for two events characterized by highly amplified flow over the North Atlantic associated with cyclogenesis. The source of variability in ridge forecasts is diagnosed using the ensemble-sensitivity technique and a potential vorticity (PV) tendency budget, which quantifies the contribution from individual physical processes toward subsequent ridge amplification. Before the onset of ridge amplitude differences for both events, ensemble forecasts with a more amplified ridge are associated with greater negative PV advection by the irrotational wind. The importance of PV advection by the irrotational wind suggests that PV changes are modulated by diabatic heating, which is confirmed by the sensitivity of ridge amplitude to earlier diabatic heating and lower-tropospheric moisture within an upstream WCB. After the onset of ridge amplitude differences, PV advection by the nondivergent wind becomes the primary driver of downstream forecast differences. Initial condition perturbations within the sensitive areas of the WCB confirm that increasing the initial lower-tropospheric moisture results in a more amplified ridge. This suggests that more accurate initial conditions near the WCB could lead to better downstream forecasts.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...