GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Astronomical Society ; 2017
    In:  The Astrophysical Journal Vol. 848, No. 2 ( 2017-10-16), p. L12-
    In: The Astrophysical Journal, American Astronomical Society, Vol. 848, No. 2 ( 2017-10-16), p. L12-
    Type of Medium: Online Resource
    ISSN: 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2017
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2017
    In:  Monthly Notices of the Royal Astronomical Society ( 2017-05-09)
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), ( 2017-05-09)
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2017
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 612 ( 2018-4), p. A14-
    Abstract: Context. The large jet kinetic power and non-thermal processes occurring in the microquasar SS 433 make this source a good candidate for a very high-energy (VHE) gamma-ray emitter. Gamma-ray fluxes above the sensitivity limits of current Cherenkov telescopes have been predicted for both the central X-ray binary system and the interaction regions of SS 433 jets with the surrounding W50 nebula. Non-thermal emission at lower energies has been previously reported, indicating that efficient particle acceleration is taking place in the system. Aim. We explore the capability of SS 433 to emit VHE gamma rays during periods in which the expected flux attenuation due to periodic eclipses ( P orb ~ 13.1 days) and precession of the circumstellar disk ( P pre ~ 162 days) periodically covering the central binary system is expected to be at its minimum. The eastern and western SS 433/W50 interaction regions are also examined using the whole data set available. We aim to constrain some theoretical models previously developed for this system with our observations. Methods. We made use of dedicated observations from the Major Atmospheric Gamma Imaging Cherenkov telescopes (MAGIC) and High Energy Spectroscopic System (H.E.S.S.) of SS 433 taken from 2006 to 2011. These observation were combined for the first time and accounted for a total effective observation time of 16.5 h, which were scheduled considering the expected phases of minimum absorption of the putative VHE emission. Gamma-ray attenuation does not affect the jet/medium interaction regions. In this case, the analysis of a larger data set amounting to ~40–80 h, depending on the region, was employed. Results. No evidence of VHE gamma-ray emission either from the central binary system or from the eastern/western interaction regions was found. Upper limits were computed for the combined data set. Differential fluxes from the central system are found to be ≲ 10 −12 –10 −13 TeV −1 cm −2 s −1 in an energy interval ranging from ~few × 100 GeV to ~few TeV. Integral flux limits down to ~ 10 −12 –10 −13 ph cm −2 s −1 and ~ 10 −13 –10 −14 ph cm −2 s −1 are obtainedat 300 and 800 GeV, respectively. Our results are used to place constraints on the particle acceleration fraction at the inner jetregions and on the physics of the jet/medium interactions. Conclusions. Our findings suggest that the fraction of the jet kinetic power that is transferred to relativistic protons must be relatively small in SS 433, q p ≤ 2.5 × 10 −5 , to explain the lack of TeV and neutrino emission from the central system. At the SS 433/W50 interface, the presence of magnetic fields ≳10 μ G is derived assuming a synchrotron origin for the observed X-ray emission. This also implies the presence of high-energy electrons with E e − up to 50 TeV, preventing an efficient production of gamma-ray fluxes in these interaction regions.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 600 ( 2017-4), p. A89-
    Abstract: Context. The addition of a 28 m Cherenkov telescope (CT5) to the H.E.S.S. array extended the experiment’s sensitivityto lower energies. The lowest energy threshold is obtained using monoscopic analysis of data taken with CT5, providing access to gamma-ray energies below 100 GeV for small zenith angle observations. Such an extension of the instrument’s energy range is particularly beneficial for studies of active galactic nuclei with soft spectra, as expected for those at a redshift ≥0.5. The high-frequency peaked BL Lac objects PKS 2155−304 ( z = 0.116) and PG 1553+113 (0.43 〈 z 〈 0.58) are among the brightest objects in the gamma-ray sky, both showing clear signatures of gamma-ray absorption at E 〉 100 GeV interpreted as being due to interactions with the extragalactic background light (EBL). Aims. The aims of this work are twofold: to demonstrate the monoscopic analysis of CT5 data with a low energy threshold, and to obtain accurate measurements of the spectral energy distributions (SED) of PKS 2155−304 and PG 1553+113 near their SED peaks at energies ≈100 GeV. Methods. Multiple observational campaigns of PKS 2155−304 and PG 1553+113 were conducted during 2013 and 2014 using the full H.E.S.S. II instrument (CT1–5). A monoscopic analysis of the data taken with the new CT5 telescope was developed along with an investigation into the systematic uncertainties on the spectral parameters which are derived from this analysis. Results. Using the data from CT5, the energy spectra of PKS 2155−304 and PG 1553+113 were reconstructed down to conservative threshold energies of 80 GeV for PKS 2155−304 , which transits near zenith, and 110 GeV for the more northern PG 1553+113 . The measured spectra, well fitted in both cases by a log-parabola spectral model (with a 5.0 σ statistical preference for non-zero curvature for PKS 2155−304 and 4.5 σ for PG 1553+113 ), were found consistent with spectra derived from contemporaneous Fermi -LAT data, indicating a sharp break in the observed spectra of both sources at E ≈ 100 GeV. When corrected for EBL absorption, the intrinsic H.E.S.S. II mono and Fermi -LAT spectrum of PKS 2155−304 was found to show significant curvature. For PG 1553+113 , however, no significant detection of curvature in the intrinsic spectrum could be found within statistical and systematic uncertainties.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2017
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 620 ( 2018-12), p. A66-
    Abstract: Aims. We report on the measurement and investigation of pulsed high-energy γ -ray emission from the Vela pulsar, PSR B0833−45, based on observations with the largest telescope of H.E.S.S., CT5, in monoscopic mode, and on data obtained with the Fermi -LAT. Methods. Data from 40.3 h of observations carried out with the H.E.S.S. II array from 2013 to 2015 have been used. A dedicated very low-threshold event reconstruction and analysis pipeline was developed to achieve the lowest possible energy threshold. Eight years of Fermi -LAT data were analysed and also used as reference to validate the CT5 telescope response model and analysis methods. Results. A pulsed γ -ray signal at a significance level of more than 15 σ is detected from the P2 peak of the Vela pulsar light curve. Of a total of 15 835 events, more than 6000 lie at an energy below 20 GeV, implying a significant overlap between H.E.S.S. II-CT5 and the Fermi -LAT. While the investigation of the pulsar light curve with the LAT confirms characteristics previously known up to 20 GeV in the tens of GeV energy range, CT5 data show a change in the pulse morphology of P2, i.e. an extreme sharpening of its trailing edge, together with the possible onset of a new component at 3.4 σ significance level. Assuming a power-law model for the P2 spectrum, an excellent agreement is found for the photon indices (Γ ≃ 4.1) obtained with the two telescopes above 10 GeV and an upper bound of 8% is derived on the relative offset between their energy scales. Using data from both instruments, it is shown however that the spectrum of P2 in the 10–100 GeV has a pronounced curvature; this is a confirmation of the sub-exponential cut-off form found at lower energies with the LAT. This is further supported by weak evidence of an emission above 100 GeV obtained with CT5. In contrast, converging indications are found from both CT5 and LAT data for the emergence of a hard component above 50 GeV in the leading wing (LW2) of P2, which possibly extends beyond 100 GeV. Conclusions. The detection demonstrates the performance and understanding of CT5 from 100 GeV down to the sub-20 GeV domain, i.e. unprecedented low energy for ground-based γ -ray astronomy. The extreme sharpening of the trailing edge of the P2 peak found in the H.E.S.S. II light curve of the Vela pulsar and the possible extension beyond 100 GeV of at least one of its features, LW2, provide further constraints to models of γ -Ray emission from pulsars.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 612 ( 2018-4), p. A8-
    Abstract: A search for new supernova remnants (SNRs) has been conducted using TeV γ -ray data from the H.E.S.S. Galactic plane survey. As an identification criterion, shell morphologies that are characteristic for known resolved TeV SNRs have been used. Three new SNR candidates were identified in the H.E.S.S. data set with this method. Extensive multiwavelength searches for counterparts were conducted. A radio SNR candidate has been identified to be a counterpart to HESS J1534−571. The TeV source is therefore classified as a SNR. For the other two sources, HESS J1614−518 and HESS J1912+101, no identifying counterparts have been found, thus they remain SNR candidates for the time being. TeV-emitting SNRs are key objects in the context of identifying the accelerators of Galactic cosmic rays. The TeV emission of the relativistic particles in the new sources is examined in view of possible leptonic and hadronic emission scenarios, taking the current multiwavelength knowledge into account.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 612 ( 2018-4), p. A1-
    Abstract: We present the results of the most comprehensive survey of the Galactic plane in very high-energy (VHE) γ -rays, including a public release of Galactic sky maps, a catalog of VHE sources, and the discovery of 16 new sources of VHE γ -rays. The High Energy Spectroscopic System (H.E.S.S.) Galactic plane survey (HGPS) was a decade-long observation program carried out by the H.E.S.S. I array of Cherenkov telescopes in Namibia from 2004 to 2013. The observations amount to nearly 2700 h of quality-selected data, covering the Galactic plane at longitudes from ℓ = 250° to 65° and latitudes | b |≤ 3°. In addition to the unprecedented spatial coverage, the HGPS also features a relatively high angular resolution (0.08° ≈ 5 arcmin mean point spread function 68% containment radius), sensitivity (≲1.5% Crab flux for point-like sources), and energy range (0.2–100 TeV). We constructed a catalog of VHE γ -ray sources from the HGPS data set with a systematic procedure for both source detection and characterization of morphology and spectrum. We present this likelihood-based method in detail, including the introduction of a model component to account for unresolved, large-scale emission along the Galactic plane. In total, the resulting HGPS catalog contains 78 VHE sources, of which 14 are not reanalyzed here, for example, due to their complex morphology, namely shell-like sources and the Galactic center region. Where possible, we provide a firm identification of the VHE source or plausible associations with sources in other astronomical catalogs. We also studied the characteristics of the VHE sources with source parameter distributions. 16 new sources were previously unknown or unpublished, and we individually discuss their identifications or possible associations. We firmly identified 31 sources as pulsar wind nebulae (PWNe), supernova remnants (SNRs), composite SNRs, or gamma-ray binaries. Among the 47 sources not yet identified, most of them (36) have possible associations with cataloged objects, notably PWNe and energetic pulsars that could power VHE PWNe.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 619 ( 2018-11), p. A71-
    Abstract: Centaurus A (Cen A) is the nearest radio galaxy discovered as a very-high-energy (VHE; 100 GeV–100 TeV) γ -ray source by the High Energy Stereoscopic System (H.E.S.S.). It is a faint VHE γ -ray emitter, though its VHE flux exceeds both the extrapolation from early Fermi -LAT observations as well as expectations from a (misaligned) single-zone synchrotron-self Compton (SSC) description. The latter satisfactorily reproduces the emission from Cen A at lower energies up to a few GeV. New observations with H.E.S.S., comparable in exposure time to those previously reported, were performed and eight years of Fermi -LAT data were accumulated to clarify the spectral characteristics of the γ -ray emission from the core of Cen A. The results allow us for the first time to achieve the goal of constructing a representative, contemporaneous γ -ray core spectrum of Cen A over almost five orders of magnitude in energy. Advanced analysis methods, including the template fitting method, allow detection in the VHE range of the core with a statistical significance of 12 σ on the basis of 213 hours of total exposure time. The spectrum in the energy range of 250 GeV–6 TeV is compatible with a power-law function with a photon index Γ = 2.52 ± 0.13 stat ± 0.20 sys . An updated Fermi -LAT analysis provides evidence for spectral hardening by Δ Γ ≃ 0.4 ± 0.1 at γ -ray energies above 2.8 +1.0 −0.6 GeV at a level of 4.0 σ . The fact that the spectrum hardens at GeV energies and extends into the VHE regime disfavour a single-zone SSC interpretation for the overall spectral energy distribution (SED) of the core and is suggestive of a new γ -ray emitting component connecting the high-energy emission above the break energy to the one observed at VHE energies. The absence of significant variability at both GeV and TeV energies does not yet allow disentanglement of the physical nature of this component, though a jet-related origin is possible and a simple two-zone SED model fit is provided to this end.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 617 ( 2018-09), p. A73-
    Abstract: Context. NGC 253 is one of only two starburst galaxies found to emit γ -rays from hundreds of MeV to multi-TeV energies. Accurate measurements of the very-high-energy (VHE; E 〉 100 GeV) and high-energy (HE; E 〉 60 MeV) spectra are crucial to study the underlying particle accelerators, probe the dominant emission mechanism(s) and to study cosmic-ray interaction and transport. Aims. The measurement of the VHE γ -ray emission of NGC 253 published in 2012 by H.E.S.S. was limited by large systematic uncertainties. Here, the most up to date measurement of the γ -ray spectrum of NGC 253 is investigated in both HE and VHE γ -rays. Assuming a hadronic origin of the γ -ray emission, the measurement uncertainties are propagated into the interpretation of the accelerated particle population. Methods. The data of H.E.S.S. observations are reanalysed using an updated calibration and analysis chain. The improved Fermi –LAT analysis employs more than 8 yr of data processed using pass 8. The cosmic-ray particle population is evaluated from the combined HE–VHE γ -ray spectrum using NAIMA in the optically thin case. Results. The VHE γ -ray energy spectrum is best fit by a power-law distribution with a flux normalisation of (1.34 ± 0.14 stat ± 0.27 sys ) × 10 −13 cm −2 s −1 TeV 1 at 1 TeV – about 40% above, but compatible with the value obtained in Abramowski et al. (2012). The spectral index Γ = 2.39 ± 0.14 stat ± 0.25 sys is slightly softer than but consistent with the previous measurement within systematic errors. In the Fermi energy range an integral flux of F ( E 〉 60 MeV) = (1.56 ± 0.28 stat ± 0.15 sys ) × 10 −8 cm −2 s −1 is obtained. At energies above ∼3 GeV the HE spectrum is consistent with a power-law ranging into the VHE part of the spectrum measured by H.E.S.S. with an overall spectral index Γ = 2.22 ± 0.06 stat . Conclusions. Two scenarios for the starburst nucleus are tested, in which the gas in the starburst nucleus acts as either a thin or a thick target for hadronic cosmic rays accelerated by the individual sources in the nucleus. In these two models, the level to which NGC 253 acts as a calorimeter is estimated to a range of f cal = 0.1 to 1 while accounting for the measurement uncertainties. The presented spectrum is likely to remain the most accurate measurements until the Cherenkov Telescope Array (CTA) has collected a substantial set of data towards NGC 253.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 612 ( 2018-4), p. A7-
    Abstract: Aims. We study γ -ray emission from the shell-type supernova remnant (SNR) RX J0852.0−4622 to better characterize its spectral properties and its distribution over the SNR. Methods. The analysis of an extended High Energy Spectroscopic System (H.E.S.S.) data set at very high energies ( E 〉 100 GeV) permits detailed studies, as well as spatially resolved spectroscopy, of the morphology and spectrum of the whole RX J0852.0−4622 region. The H.E.S.S. data are combined with archival data from other wavebands and interpreted in the framework of leptonic and hadronic models. The joint Fermi -LAT-H.E.S.S. spectrum allows the direct determination of the spectral characteristics of the parent particle population in leptonic and hadronic scenarios using only GeV-TeV data. Results. An updated analysis of the H.E.S.S. data shows that the spectrum of the entire SNR connects smoothly to the high-energy spectrum measured by Fermi -LAT. The increased data set makes it possible to demonstrate that the H.E.S.S. spectrum deviates significantly from a power law and is well described by both a curved power law and a power law with an exponential cutoff at an energy of E cut = (6.7 ± 1.2 stat ± 1.2 syst ) TeV. The joint Fermi -LAT-H.E.S.S. spectrum allows the unambiguous identification of the spectral shape as a power law with an exponential cutoff. No significant evidence is found for a variation of the spectral parameters across the SNR, suggesting similar conditions of particle acceleration across the remnant. A simple modeling using one particle population to model the SNR emission demonstrates that both leptonic and hadronic emission scenarios remain plausible. It is also shown that at least a part of the shell emission is likely due to the presence of a pulsar wind nebula around PSR J0855−4644.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...