GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2013-06-14
    Beschreibung: Magmatic sulphides are a widespread component in mafic and ultramafic rocks and contain variable concentrations of nickel, copper and platinum-group elements. Previous literature has been concerned with the whole-rock geochemistry of magmatic sulphide ores and their host-rocks and relatively little attention has been paid to the physical nature of magmatic sulphide transport and accumulation. Our high-resolution X-ray computed tomography study quantifies for the first time the 2D and 3D size, shape and textural relationships, and distribution of disseminated magmatic sulphides and olivine in adcumulates from komatiites. These new data are combined with analysis of trace-element concentrations within sulphides to provide important information about the mechanisms of transport, deposition and post-accumulation migration of sulphide liquid in dynamic magmatic systems. Olivine shows evidence of textural maturation, with larger crystals growing at the expense of small ones to different degrees depending on the sulphide content of the rock. The olivine texture and the presence of poikilitic chromite provide evidence of in situ nucleation of olivine and chromite at the interface between a flowing magma and a basal pile of crystals. Disseminated to strongly interconnected base-metal sulphides are located at contacts between olivine crystals or in some cases can be entirely or partially enclosed within chromite. Based on their 3D morphologies, their size distribution and their Pd concentrations, the sulphides are divided into four main categories: finely disseminated sulphides; disseminated to slightly interconnected sulphides; disseminated to globular sulphides; disseminated to strongly interconnected sulphides. All samples contain a population of sub-spherical sulphide blebs (〈1000 µm equivalent sphere diameter; ESD), which are observed in the olivine–sulphide cotectic proportion and which contain the lowest Pd concentrations. These small droplets are interpreted to have formed by segregation of immiscible sulphide liquid upon cooling of a komatiitic magma flowing in a magma conduit or channel. These newly formed droplets were trapped in situ by the crystallizing framework of olivine and/or chromite. Larger sulphide blebs (up to 10 mm ESD) are present where the sulphide abundance is 〉3 wt % and the sulphide bleb size population is multi-modal. The Pd content of the sulphide blebs is variable and positively correlated with the sulphide bleb size. The overall sulphide abundance, sulphide bleb size and Pd concentrations indicate that these sulphides have been transported in a flowing sulphur-saturated magma over some distance and accumulated at their present site by mechanical processes. Strongly interconnected network to matrix sulphides are observed in samples containing more than 5 wt % sulphide with small variability in Pd concentrations within and between blebs. These sulphides are interpreted to reflect the accumulation and coalescence (by film drainage) of small sulphide blebs. Overall our results show that komatiite-hosted disseminated sulphides form by a mechanical accumulation process that takes place against a background of steady-state in situ nucleation of small blebs along the olivine–sulphide liquid cotectic.
    Print ISSN: 0022-3530
    Digitale ISSN: 1460-2415
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 6 (1988), S. 0 
    ISSN: 1525-1314
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geologie und Paläontologie
    Notizen: Abstract Migmatites in the Quetico Metasedimentary Belt contain two types of leucosome: (1) Layer-parallel leucosomes that grew during deformation and prograde metamorphism. These are enriched in SiO2, Sr, and Eu, but depleted in TiO2, Fe2O3, MgO, Cs, Rb, REE, Sc, Th, Zr, and Hf relative to the Quetico metasediments. (2) Discordant leucosomes that formed after the regional folding events when metamorphic temperatures were at their peak. These are enriched in Rb, Ba, Sr and Eu, but display a wide range of LREE, Th, Zr, and Hf contents relative to the Quetico metasediments.Layer-parallel leucosomes formed by a subsolidus process termed tectonic segregation. This stress-induced mass transfer process began when the Quetico sediments were deformed during burial, and continued whilst the rocks were both stressed and heterogeneous. Subsolidus leucosome compositions are consistent with the mobilization of quartz and feldspar from the host rocks by pressure solution. The discordant leucosomes formed by partial melting of the Quetico metasediments, possibly during uplift of the belt. The range of composition displayed by the anatectic leucosomes arises from crystal fractionation during leucosome emplacement. Some anatectic leucosomes preserve primary melt compositions and have smooth REE patterns, but those with negative Eu anomalies represent fractionated melts, and others with positive Eu anomalies represent accumulations of feldspar plus trapped melt.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Mineralogy and petrology 54 (1995), S. 85-92 
    ISSN: 1438-1168
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie
    Beschreibung / Inhaltsverzeichnis: Zusammenfassung Chromit ist in Olivin-reichen Kumulaten, die von komatiitischen Laven abstammen, ein häufiges akzessorisches Mineral. Die Verteilung und der Kristallhabitus von Chromit hängt vom Grad der Differentiation des Stammagmas, der in der Zusammensetzung der Kumulus-Olivine zum Ausdruck kommt, ab. Für Kumulate mit Olivinen mit einem Forsterit-Gehalt von über 93 mol.% ist es charakteristisch, daß sie überhaupt keinen Chromit enthalten, während Chromit in Kumulaten mit Olivinen mit weniger als 90 mol.% Forsterit Cluster aus fein verteilten, idiomorphem Körnern bildet. Im Intervall Forsterit 90–93 kann Chromit lobate, interstitielle Formen ausbilden. Im ultramafischen Komplex Six Mile Well in der Yakabindie-Region des Agnew-Wiluna-Grünsteingürtels und in anderen Olivin-reichen komatiitischen Einheiten in diesem Gürtel zeigen die Chromite gut entwickelte poikilitische Texturen mit eingeschlossenen Olivinen. Da silikatische Interkumulus-Phasen in diesen Gesteinen fehlen und der normative Chromitgehalt des Stammagmas niedrig ist, können diese Chromitkörner nicht aus einer Interkumulus-Schmelze auskristallisiert sein. Diese Gesteine müssen daher kotektische Chromit-Olivin-Adkumulate sein, die ihre ungewöhnliche Textur den variierenden relativen Keimbildungs- und Wachstumsraten von Chromit und Olivin, die gemeinsam in situ kristallisierten, verdanken. Diese Beobachtung stellt einen weiteren Beweis für die Entstehung von Oikokristallen als Kumulusphase in geschichteten Intrusionen dar und läßt die Zweckmäßigkeit der Kumulus-Terminologie als zweifelhaft erscheinen.
    Notizen: Summary Chromite is a widespread accessory mineral in olivine-rich cumulates derived from komatiitic lavas. The distribution and crystal habit of chromfite is related to the degree of differentiation of the parent magma as reflected in the composition of cumulus olivine. Cumulates with olivine forsterite content greater than 93 mol percent typically contain no chromfite at all, while chromfite forms clusters of disseminated euhedral grains in cumulates with forsterite less than 91 mol percent. In the forsterite 91–93 interval, chromite may develop lobate interstitial habits. In the Six Mile Well ultramafic complex in the Yakabindie region of the Agnew-Wiluna greenstone belt, and in other olivine-rich komatiitic units within this belt, chromfite shows well developed poikilitic textures enclosing olivine. The absence of intercumulus silicate phases in these rocks and the low normative chromfite content of the parent magma make it impossible for these chromfite grains to have crystallised from intercumulus trapped liquid. These rocks must be cotectic chromite-olivine adcumulates, owing their unusual texture to differing relative rates of nucleation and growth of chromfite and olivine, crystallising togetherin situ. This observation provides further evidence for a cumulus origin for oikocrysts in layered intrusions, and casts doubt on the usefulness of cumulus terminology.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Springer
    Contributions to mineralogy and petrology 124 (1996), S. 111-125 
    ISSN: 1432-0967
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie
    Notizen: Abstract  Sulfide inclusions in diamonds may provide the only pristine samples of mantle sulfides, and they carry important information on the distribution and abundances of chalcophile elements in the deep lithosphere. Trace-element abundances were measured by proton microprobe in 〉50 sulfide inclusions (SDI) from Yakutian diamonds; about half of these were measured in situ in polished plates of diamonds, providing information on the spatial distribution of compositional variations. Many of the diamonds were identified as peridotitic or eclogitic from the nature of coexisting silicate or oxide inclusions. Known peridotitic diamonds contain SDIs with Ni contents of 22–36%, consistent with equilibration between olivine, monosulfide solid solution (MSS) and sulfide melt, whereas SDIs in eclogitic diamonds contain 0–12% Ni. A group of diamonds without silicate or oxide inclusions has SDIs with 11–18% Ni, and may be derived from pyroxenitic parageneses. Eclogitic SDIs have lower Ni, Cu and Te than peridotitic SDIs; the ranges of the two parageneses overlap for Se, As and Mo. The Mo and Se contents range up to 700 and 300 ppm, respectively; the highest levels are found in peridotitic diamonds. Among the in-situ SDIs, significant Zn and Pb levels are found in those connected by cracks to diamond surfaces, and these elements reflect interaction with kimberlitic melt. Significant levels of Ru (30–1300 ppm) and Rh (10–170 ppm) are found in many peridotitic SDIs; SDIs in one diamond with wustite and olivine inclusions and complex internal structures have high levels of other platinum-group elements (PGEs) as well, and high chondrite-normalized Ir/Pd. Comparison with experimental data on element partitioning between crystals of monosulfide solid solution (MSS) and sulfide melts suggests that most of the inclusions in both parageneses were trapped as MSS, while some high-Cu SDIs with high Pd±Rh may represent fractionated sulfide melts. Spatial variations of SDI composition within single diamonds are consistent with growth histories shown by cathodoluminescence images, in which several stages of growth and resorption have occurred within magmatic environments that evolved during diamond formation.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Springer
    Contributions to mineralogy and petrology 123 (1996), S. 435-437 
    ISSN: 1432-0967
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2013-12-22
    Beschreibung: Copper-rich massive sulfides are an important source of Pt and Pd in magmatic Ni-Cu-platinum group element ore deposits. At the McCreedy East deposit, Sudbury, they constitute a classic magmatic assemblage of chalcopyrite, cubanite ± pentlandite, located in sharp-walled footwall veins. These Cu-rich ores represent the subsolidus (〈600°C) exsolution products of intermediate solid solution (ISS) that crystallized (950°–800°C) from a highly fractionated sulfide liquid rich in Pt, Pd, Ag, As, Bi, Cd, Pb, Se, Sn, Te, and Zn. Laser ablation-inductively coupled plasma-mass spectrometry and scanning electron microscope analyses have revealed the distribution of platinum group elements (PGE) and trace elements in these ores, which is important for a better understanding of the petrogenesis of Cu-rich sulfide deposits and to improve PGE extraction. Chalcopyrite and cubanite are the dominant hosts of Se and Sn, with Co in pentlandite. Lead is hosted by galena and Zn and Cd by sphalerite, with only a small proportion of these elements present at trace level in ISS (now equally distributed between chalcopyrite and cubanite). Platinum, Pd, Au, As, Bi, and Te, however, are not concentrated in the base metal sulfides and are accounted for almost entirely by the platinum group mineral assemblage, which is dominated by Pt-Pd-Bi-Te phases, such as michenerite [(Pt,Pd)BiTe] and froodite [PdBi 2 ], with minor sperrylite [PtAs 2 ] and Sn-bearing platinum group minerals (PGM), such as niggliite [PtSn], paolovite [Pd 2 Sn], and an unnamed Pt-Sn-Te phase. The PGM form complex, composite grains hosted at the grain boundaries of the base metal sulfides. They typically comprise a core of Sn- or As-bearing PGM (stable at higher temperatures) hosted in Bi-Te-PGM (lower temperatures), which are commonly surrounded by accessory tellurides (Ag, Bi, Pb bearing) and sulfides (galena, sphalerite, and stannite [Cu 2 FeSnS 4 ]). Primary chloride minerals such as cottunite [PbCl 2 ] and ferropyrosmalite [(Fe,Mn) 8 Si 6 O 15 (OH,Cl) 10 ] also form composite grains with hessite [Ag 2 Te] and galena. In contrast to much of the previous work at Sudbury, which has invoked the role of late-magmatic and/or hydrothermal fluids in the collection of precious metals, we show that, in this case, PGM in Cu-rich ore have a magmatic origin. Due to the incompatibility of Pt, Pd, Bi, and Te during the crystallization of ISS, these elements became concentrated in a small volume of late-stage S-bearing melt trapped between intermediate solid solutions. A sequence of PGM, followed by accessory tellurides and sulfides, crystallized from this late-stage melt and formed composite grains. Toward the end of crystallization, the small amount of Cl that was soluble in the sulfide liquid crystallized as primary chloride minerals at low temperatures (〈500°C), either from the late-stage melt or from an exsolved Cl-rich late-magmatic fluid. Some of the primary PGM have been partially altered by Cl-rich fluids (late magmatic and/or hydrothermal) that leached Bi in preference to Pd to form an unnamed Pd-Bi-O-Cl phase. Many PGM also show scalloped edges and truncated grain boundaries, indicating partial corrosion and dissolution, most likely by late-magmatic/hydrothermal fluids that probably remobilized and deposited PGE in the footwall surrounding the veins.
    Print ISSN: 0361-0128
    Thema: Geologie und Paläontologie
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2013-02-22
    Beschreibung: More than 390 chromite grains from komatiites and komatiitic basalts from the Yilgarn craton of Western Australia and the Finnish part of the Fennoscandian Shield were analyzed using in situ laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to identify ruthenium (Ru) signatures in chromite associated with nickel sulfide-bearing rocks. Results indicate a potential method to discriminate mineralized and barren komatiite and komatiitic basalt units based on Ru concentrations in chromite and indicate potential for chromite to be used as a resistate indicator mineral in exploration for komatiite-associated nickel sulfide deposits. Chromites from barren komatiites and komatiitic basalts display Ru concentrations mostly between ~150 and 600 ppb. Chromites from mineralized units have distinctly lower Ru contents (〈150 ppb). These results can be interpreted in terms of the much higher partition coefficient for Ru into sulfide liquid compared to that of Ru into chromite, resulting in much lower Ru concentrations in chromite where both chromite and sulfide liquid are present and competing for Ru. As a result, the Ru content of chromite can be used to determine if a komatiite melt equilibrated with a sulfide liquid during crystallization, and therefore, if a system and/or sequence is prospective for nickel sulfide mineralization. The strength of this method compared to previous whole-rock exploration techniques derives from combining (1) the geochemical properties of a chalcophile element that records an ore-forming process while being strongly immobile during postmagmatic processes, with (2) the in situ analysis of a mineral that is generally preserved even in highly altered and mildly weathered komatiites and that is a common constituent of detrital heavy mineral samples. Chromite Ru content has potential as a prospectivity indicator, applicable to a wide range of media including bedrock, laterites, and detrital resistates heavy mineral samples.
    Print ISSN: 0361-0128
    Thema: Geologie und Paläontologie
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2012-06-01
    Beschreibung: Sulfide droplets from fresh Mid-Ocean-Ridge Basalt (MORB) glasses show different textures. Some are fine-grained droplets consist of Monosulfide Solid Solution (Mss) and Intermediate Solid Solution (Iss) micrometric intergrowths with pentlandite at the Mss-Iss interface and disseminated Fe-oxide grains; other droplets display a characteristic "zoned" texture consisting of segregated massive grains of Mss and Iss, with euhedral Fe-oxides and pentlandite occuring as equant grains and as flame-shaped domains in the Mss formed by exsolutions. The difference in the textures implies a difference in the crystallization history of the sulfide droplets. These different textures are observed in droplets that are only millimeters apart in the same sample, and thus had an identical cooling history. Therefore, some other factors controlled the textural development. There is relationship between the size and the texture of the droplets. The larger sulfide droplets tend to have zoned textures and the smaller ones fine-grained textures. We propose that the latter have experienced greater undercooling before crystallization. The reason for the delay in crystallization could be that, in the small sulfide droplets, large stable grains with low surface to volume ratio cannot form, which results in higher effective solubility of the Mss. Due to the high degree of undercooling in the small droplets, there were numerous nucleation sites and the diffusion rates of the crystal components in the liquid were lower, leading to fine-grained Mss-Iss intergrowths. In contrast, larger droplets with lower effective solubility of Mss began to crystallize at higher temperature, and thus had fewer nucleation sites, higher diffusion rates, and more time for sulfide differentiation.
    Print ISSN: 0008-4476
    Thema: Geologie und Paläontologie
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2014-07-16
    Beschreibung: The generation and evolution of Earth’s continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that...
    Print ISSN: 0027-8424
    Digitale ISSN: 1091-6490
    Thema: Biologie , Medizin , Allgemeine Naturwissenschaft
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2015-09-08
    Beschreibung: The Monts de Cristal Complex of Gabon consists of several igneous bodies interpreted to be remnants of a tectonically dismembered, 〉100 km long and 1–3 km wide, ultramafic–mafic intrusion emplaced at 2765–2775 Ma. It is the most significant mafic–ultramafic layered complex yet identified on the Congo Craton. The complex consists largely of orthopyroxenite cumulates, with less abundant olivine-orthopyroxenite and norite, and rare harzburgite and dunite. Mineral compositions (Fo ol 84, Mg# Opx 85, An plag 60–68, Cr/Fe chromite 1–1·45) and whole-rock data suggest that the parent magma was a low-Ti basalt containing approximately 10% MgO and 0·5% TiO 2 . Trace element and Rb–Sr and Sm–Nd isotope data indicate the presence of an enriched component, possibly derived from crustal contamination of a magma generated in the sub-lithospheric mantle. Most rocks show a highly unusual pattern of strong Pt enrichment (10–150 ppb) at low concentrations of Pd (1–15 ppb), Au (1–2 ppb), Cu (1–20 ppm), and S (〈500 ppm), suggesting that unlike in most other PGE-rich intrusions globally, platinum in the Monts de Cristal Complex is not hosted in magmatic sulfides. Synchrotron X-ray fluorescence mapping has revealed the location of buried small Pt particles, most of which are associated with As. We propose that this constitutes some of the strongest evidence yet in support of magmatic crystallization of a Pt–As phase from S-undersaturated magma.
    Print ISSN: 0022-3530
    Digitale ISSN: 1460-2415
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...