GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    The American Association of Immunologists ; 2012
    In:  The Journal of Immunology Vol. 188, No. 8 ( 2012-04-15), p. 3886-3892
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 188, No. 8 ( 2012-04-15), p. 3886-3892
    Abstract: Recently, it has been reported that human B cells express and secrete the cytotoxic protease granzyme B (GrB) after stimulation with IL-21 and BCR cross-linking. To date, there are few clues on the function of GrB in B cell biology. As experimental transgenic murine systems should provide insights into these issues, we assayed for GrB in C57BL/6 B cells using an extensive array of physiologically relevant stimuli but were unable to detect either GrB expression or its proteolytic activity, even when Ag-specific transgenic BCRs were engaged. Similar results were also obtained with B cells from DBA/2, CBA, or BALB/c mice. In vivo, infection with either influenza virus or murine γ-herpesvirus induced the expected expression of GrB in CTLs, but not in B cell populations. We also investigated a possible role of GrB on the humoral immune response to the model Ag 4-hydroxy-3-nitrophenylacetyl–keyhole limpet hemocyanin, but GrB-deficient mice produced normal amounts of Ab with typical affinity maturation and a heightened secondary response, demonstrating conclusively the redundancy of GrB for Ab responses. Our results highlight the complex evolutionary differences that have shaped the immune systems of mice and humans. The physiological consequences of GrB expression in human B cells remain unclear, and the current study suggests that experimental mouse models will not be helpful in addressing this issue.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2012
    detail.hit.zdb_id: 1475085-5
    detail.hit.zdb_id: 3056-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 192, No. 7 ( 2014-04-01), p. 3200-3206
    Abstract: In response to antigenic stimulation, mature B cells interact with follicular helper T cells in specialized structures called germinal centers (GCs), which leads to the development of memory B cells and Ab-secreting plasma cells. The transcription factor IFN regulatory factor 4 (IRF4) is essential for the formation of follicular helper T cells and thus GCs, although whether IRF4 plays a distinct role in GC B cells remains contentious. RNAseq analysis on ex vivo-derived mouse B cell populations showed that Irf4 was lowly expressed in naive B cells, highly expressed in plasma cells, but absent from GC B cells. In this study, we used conditional deletion of Irf4 in mature B cells as well as wild-type and Irf4-deficient mixed bone marrow chimeric mice to investigate how and where IRF4 plays its essential role in GC formation. Strikingly, GC formation was severely impaired in mice in which Irf4 was conditionally deleted in mature B cells, after immunization with protein Ags or infection with Leishmania major. This effect was evident as early as day 5 following immunization, before the development of GCs, indicating that Irf4 was required for the development of early GC B cells. This defect was B cell intrinsic because Irf4-deficient B cells in chimeric mice failed to participate in the GC in response to L. major or influenza virus infection. Taken together, these data demonstrate a B cell–intrinsic requirement for IRF4 for not only the development of Ab secreting plasma cells but also for GC formation.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2014
    detail.hit.zdb_id: 1475085-5
    detail.hit.zdb_id: 3056-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Experimental Medicine, Rockefeller University Press, Vol. 213, No. 6 ( 2016-05-30), p. 1095-1111
    Abstract: The generation of high-affinity antibodies requires germinal center (GC) development and differentiation of long-lived plasma cells in a multilayered process that is tightly controlled by the activity of multiple transcription factors. Here, we reveal a new layer of complexity by demonstrating that dynamic changes in Id3 and E-protein activity govern both GC and plasma cell differentiation. We show that down-regulation of Id3 in B cells is essential for releasing E2A and E2-2, which in a redundant manner are required for antigen-induced B cell differentiation. We demonstrate that this pathway controls the expression of multiple key factors, including Blimp1, Xbp1, and CXCR4, and is therefore critical for establishing the transcriptional network that controls GC B cell and plasma cell differentiation.
    Type of Medium: Online Resource
    ISSN: 0022-1007 , 1540-9538
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 2016
    detail.hit.zdb_id: 218343-2
    detail.hit.zdb_id: 1477240-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Experimental Medicine, Rockefeller University Press, Vol. 209, No. 11 ( 2012-10-22), p. 2049-2064
    Abstract: A strong humoral response to infection requires the collaboration of several hematopoietic cell types that communicate via antigen presentation, surface coreceptors and their ligands, and secreted factors. The proinflammatory cytokine IL-6 has been shown to promote the differentiation of activated CD4+ T cells into T follicular helper cells (TFH cells) during an immune response. TFH cells collaborate with B cells in the formation of germinal centers (GCs) during T cell–dependent antibody responses, in part through secretion of critical cytokines such as IL-21. In this study, we demonstrate that loss of either IL-6 or IL-21 has marginal effects on the generation of TFH cells and on the formation of GCs during the response to acute viral infection. However, mice lacking both IL-6 and IL-21 were unable to generate a robust TFH cell–dependent immune response. We found that IL-6 production in follicular B cells in the draining lymph node was an important early event during the antiviral response and that B cell–derived IL-6 was necessary and sufficient to induce IL-21 from CD4+ T cells in vitro and to support TFH cell development in vivo. Finally, the transcriptional activator Oct2 and its cofactor OBF-1 were identified as regulators of Il6 expression in B cells.
    Type of Medium: Online Resource
    ISSN: 1540-9538 , 0022-1007
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 2012
    detail.hit.zdb_id: 218343-2
    detail.hit.zdb_id: 1477240-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Rockefeller University Press ; 2015
    In:  Journal of Experimental Medicine Vol. 212, No. 7 ( 2015-06-29), p. 1001-1009
    In: Journal of Experimental Medicine, Rockefeller University Press, Vol. 212, No. 7 ( 2015-06-29), p. 1001-1009
    Abstract: Plasma cell migration is crucial to immunity, but little is known about the molecular regulators of their migratory programs. Here, we detail the critical role of the transcription factor c-Myb in determining plasma cell location. In the absence of c-Myb, no IgG+ antigen-specific plasma cells were detected in the bone marrow after immunization or virus infection. This was correlated with a dramatic reduction of plasma cells in peripheral blood, mislocalization in spleen, and an inability of c-Myb–deficient plasma cells to migrate along a CXCL12 gradient. Therefore, c-Myb plays an essential, novel role in establishing the long-lived plasma cell population in the BM via responsiveness to chemokine migration cues.
    Type of Medium: Online Resource
    ISSN: 1540-9538 , 0022-1007
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 2015
    detail.hit.zdb_id: 218343-2
    detail.hit.zdb_id: 1477240-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...