GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Bathe, Ravi  (2)
  • Ramesh, R.  (2)
  • 1
    In: Journal of Applied Physics, AIP Publishing, Vol. 84, No. 11 ( 1998-12-01), p. 6255-6261
    Abstract: Epitaxial films of La0.7Ca0.3MnO3 have been irradiated with 90 MeV oxygen ions at different dose values ranging from 1011–1014 ions/cm2. The structural, magnetization, and magnetotransport properties have been studied as a function of the ion dose. It is found that the properties change gradually up to a dose of 1013 ions/cm2; however, drastic changes occur when the sample is irradiated at the higher dose of 1014 ions/cm2. Specifically, this sample exhibits a large, nearly temperature independent magnetoresistance in the low temperature regime. The Rutherford backscattering channeling data bring out the presence of defects in the irradiated films. The x-ray diffraction data, the temperature dependence of resistivity and magnetization, and the low temperature magnetic hysterisis data collectively indicate the presence of two different phases in the sample irradiated at 1014 ions/cm2. The surface morphology of this film, observed by atomic force microscopy, exhibits swelling, presumably due to subsurface clustering of point defects. The observed results are analyzed in terms of point defect induced random spin disorder and its effect on the magnetotransport properties.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 1998
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Applied Physics, AIP Publishing, Vol. 87, No. 9 ( 2000-05-01), p. 4210-4215
    Abstract: Epitaxial La0.7Ca0.3MnO3 thin films on the SrTiO3(100) surface have been irradiated with 250 MeV Ag17+ ions at different nominal fluence values in the range of 5×1010–4×1011 ions/cm2, resulting in columnar defects. At low fluences these defects cause changes in material properties that are small and scale linearly with dosage. Above a threshold fluence value ∼3×1011 ions/cm2 dramatic changes are observed, including an order of magnitude increase in the resistivity and 50 K drop in the Curie temperature. Transmission electron microscopy measurements show that the changes are associated with a phase transformation of the undamaged region between the columnar defects. The transformed phase has a diffraction pattern very similar to that seen in charge-ordered La0.5Ca0.5MnO3. We propose that above a critical level of ion damage, strains caused by the presence of the columnar defects induce a charge-ordering phase transition that causes the observed dramatic changes in physical properties. We speculate that a conceptually similar surface-induced charge ordering may be responsible for the “dead layer” observed in very thin strained films, and the dramatic changes in optical properties induced by polishing, and that an impurity-induced charge ordering causes the extreme sensitivity of properties to lattice substitution.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2000
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...