GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Veterinary Internal Medicine, Wiley, Vol. 37, No. 2 ( 2023-03), p. 606-617
    Abstract: Blood‐brain barrier (BBB) permeability can be assessed quantitatively using advanced imaging analysis. Hypothesis/Objectives Quantification and characterization of blood‐brain barrier dysfunction (BBBD) patterns in dogs with brain tumors can provide useful information about tumor biology and assist in distinguishing between gliomas and meningiomas. Animals Seventy‐eight hospitalized dogs with brain tumors and 12 control dogs without brain tumors. Methods In a 2‐arm study, images from a prospective dynamic contrast‐enhanced (DCE; n = 15) and a retrospective archived magnetic resonance imaging study (n = 63) were analyzed by DCE and subtraction enhancement analysis (SEA) to quantify BBB permeability in affected dogs relative to control dogs (n = 6 in each arm). For the SEA method, 2 ranges of postcontrast intensity differences, that is, high (HR) and low (LR), were evaluated as possible representations of 2 classes of BBB leakage. BBB score was calculated for each dog and was associated with clinical characteristics and tumor location and class. Permeability maps were generated, using the slope values (DCE) or intensity difference (SEA) of each voxel, and analyzed. Results Distinctive patterns and distributions of BBBD were identified for intra‐ and extra‐axial tumors. At a cutoff of 0.1, LR/HR BBB score ratio yielded a sensitivity of 80% and specificity of 100% in differentiating gliomas from meningiomas. Conclusions and Clinical Importance Blood‐brain barrier dysfunction quantification using advanced imaging analyses has the potential to be used for assessment of brain tumor characteristics and behavior and, particularly, to help differentiating gliomas from meningiomas.
    Type of Medium: Online Resource
    ISSN: 0891-6640 , 1939-1676
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2177690-8
    SSG: 22
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Veterinary Internal Medicine, Wiley, Vol. 36, No. 2 ( 2022-03), p. 702-712
    Abstract: The blood‐brain barrier (BBB), which separates the intravascular and neuropil compartments, characterizes the vascular bed of the brain and is essential for its proper function. Recent advances in imaging techniques have driven the development of methods for quantitative assessment of BBB permeability. Hypothesis/Objectives Permeability of the BBB can be assessed quantitatively in dogs with meningoencephalitis of unknown origin (MUO) and its status is associated with the occurrence of seizures. Animals Forty dogs with MUO and 12 dogs without MUO. Methods Retrospective, prospective cohort study. Both dynamic contrast enhancement (DCE) and subtraction enhancement analysis (SEA) methods were used to evaluate of BBB permeability in affected (DCE, n = 8; SEA, n = 32) and control dogs (DCE, n = 6; SEA, n = 6). Association between BBB dysfunction (BBBD) score and clinical characteristics was examined. In brain regions where BBBD was identified by DCE or SEA magnetic resonance imaging (MRI) analysis, immunofluorescent staining for albumin, glial fibrillary acidic protein, ionized calcium binding adaptor molecule, and phosphorylated mothers against decapentaplegic homolog 2 were performed to detect albumin extravasation, reactive astrocytes, activated microglia, and transforming growth factor beta signaling, respectively. Results Dogs with BBBD had significantly higher seizure prevalence (72% vs 19%; P  = .01) when compared to MUO dogs with no BBBD. The addition of SEA to routine MRI evaluation increased the identification rate of brain pathology in dogs with MUO from 50% to 72%. Conclusions and Clinical Importance Imaging‐based assessment of BBB integrity has the potential to predict risk of seizures in dogs with MUO.
    Type of Medium: Online Resource
    ISSN: 0891-6640 , 1939-1676
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2177690-8
    SSG: 22
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...