GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Barnard, Luke  (2)
  • Zhong, Zhihui  (2)
  • 1
    In: The Astrophysical Journal Letters, American Astronomical Society, Vol. 917, No. 2 ( 2021-08-01), p. L16-
    Abstract: In this work we have, for the first time, applied the interpretation of multiple “ghost-fronts” to two synthetic coronal mass ejections (CMEs) propagating within a structured solar wind using the Heliospheric Upwind eXtrapolation time (HUXt) solar wind model. The two CMEs occurred on 2012 June 13–14 showing multiple fronts in images from Solar Terrestrial Relations Observatory Heliospheric Imagers (HIs). The HUXt model is used to simulate the evolution of these CMEs across the inner heliosphere as they interacted with structured ambient solar wind. The simulations reveal that the evolution of CME shape is consistent with observations across a wide range of solar latitudes and that the manifestation of multiple “ghost-fronts” within HIs’ field of view is consistent with the positions of the nose and flank of the same CME structure. This provides further confirmation that the angular separation of these features provides information on the longitudinal extent of a CME. For one of the CMEs considered in this study, both simulations and observations show that a concave shape develops within the outer CME front. We conclude that this distortion results from a latitudinal structure in the ambient solar wind speed. The work emphasizes that the shape of the CME cannot be assumed to remain a coherent geometrical shape during its propagation in the heliosphere. Our analysis demonstrates that the presence of “ghost” CME fronts can be used to infer the distortion of CMEs by ambient solar wind structure as a function of both latitude and longitude. This information has the potential to improve the forecasting of space weather events at Earth.
    Type of Medium: Online Resource
    ISSN: 2041-8205 , 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2021
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Astrophysical Journal Letters, American Astronomical Society, Vol. 951, No. 1 ( 2023-07-01), p. L14-
    Abstract: We present two multipoint interplanetary coronal mass ejections (ICMEs) detected by the Tianwen-1 and Mars Atmosphere and Volatile Evolution spacecraft at Mars and the BepiColombo (0.56 au ∼0.67 au) upstream of Mars from 2021 December 5 to 31. This is the first time that BepiColombo is used as an upstream solar wind monitor ahead of Mars and that Tianwen-1 is used to investigate the magnetic field characteristics of ICMEs at Mars. The Heliospheric Upwind Extrapolation time model was used to connect the multiple in situ observations and the coronagraph observations from STEREO/SECCHI and SOHO/LASCO. The first fast coronal mass ejection event (∼761.2 km s −1 ), which erupted on December 4, impacted Mars centrally and grazed BepiColombo by its western flank. The ambient slow solar wind decelerated the west flank of the ICME, implying that the ICME event was significantly distorted by the solar wind structure. The second slow ICME event (∼390.7 km s −1 ) underwent an acceleration from its eruption to a distance within 0.69 au and then traveled with the constant velocity of the ambient solar wind. These findings highlight the importance of background solar wind in determining the interplanetary evolution and global morphology of ICMEs up to Mars distance. Observations from multiple locations are invaluable for space weather studies at Mars and merit more exploration in the future.
    Type of Medium: Online Resource
    ISSN: 2041-8205 , 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...