GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Earth System Science Data, Copernicus GmbH, Vol. 14, No. 8 ( 2022-08-11), p. 3615-3633
    Abstract: Abstract. Wind waves play an important role in the climate system, modulating the energy exchange between the ocean and the atmosphere and effecting ocean mixing. However, existing ship-based observational networks of wind waves are still sparse, limiting therefore the possibilities of validating satellite missions and model simulations. In this paper we present data collected on three research cruises in the North Atlantic and Arctic in 2020 and 2021 and the SeaVision system for measuring wind wave characteristics over the open ocean with a standard marine navigation X-band radar. Simultaneously with the SeaVision wind wave characteristic measurements, we also collected data from the Spotter wave buoy at the same locations, and we ran the WaveWatch III model in a very high-resolution configuration over the observational domain. SeaVision measurements were validated against co-located Spotter wave buoy data and intercompared with the output of WaveWatch III simulations. Observations of the wind waves with the navigation X-band radar were found to be in good agreement with buoy data and model simulations with the best match for the wave propagation directions. Supporting datasets consist of significant wave heights, wave directions, wave periods and wave energy frequency spectra derived from both SeaVision and the Spotter buoy. All supporting data are available through the PANGAEA repository – https://doi.org/10.1594/PANGAEA.939620 (Gavrikov et al., 2021). The dataset can be further used for validation of satellite missions and regional wave model experiments. Our study shows the potential of ship navigation X-band radars (when assembled with SeaVision or similar systems) for the development of a new near-global observational network providing a much larger number of wind wave observations compared to e.g. Voluntary Observing Ship (VOS) data and research vessel campaigns.
    Type of Medium: Online Resource
    ISSN: 1866-3516
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2475469-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...