GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Bulletin of the American Meteorological Society Vol. 104, No. 1 ( 2023-01), p. E126-E157
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 104, No. 1 ( 2023-01), p. E126-E157
    Abstract: The Global Energy and Water Cycle Exchanges (GEWEX) project was created more than 30 years ago within the framework of the World Climate Research Programme (WCRP). The aim of this initiative was to address major gaps in our understanding of Earth’s energy and water cycles given a lack of information about the basic fluxes and associated reservoirs of these cycles. GEWEX sought to acquire and set standards for climatological data on variables essential for quantifying water and energy fluxes and for closing budgets at the regional and global scales. In so doing, GEWEX activities led to a greatly improved understanding of processes and our ability to predict them. Such understanding was viewed then, as it remains today, essential for advancing weather and climate prediction from global to regional scales. GEWEX has also demonstrated over time the importance of a wider engagement of different communities and the necessity of international collaboration for making progress on understanding and on the monitoring of the changes in the energy and water cycles under ever increasing human pressures. This paper reflects on the first 30 years of evolution and progress that has occurred within GEWEX. This evolution is presented in terms of three main phases of activity. Progress toward the main goals of GEWEX is highlighted by calling out a few achievements from each phase. A vision of the path forward for the coming decade, including the goals of GEWEX for the future, are also described.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 103, No. 12 ( 2022-12), p. E2756-E2767
    Abstract: Subseasonal-to-seasonal (S2S) precipitation prediction in boreal spring and summer months, which contains a significant number of high-signal events, is scientifically challenging and prediction skill has remained poor for years. Tibetan Plateau (TP) spring observed surface ­temperatures show a lag correlation with summer precipitation in several remote regions, but current global land–atmosphere coupled models are unable to represent this behavior due to significant errors in producing observed TP surface temperatures. To address these issues, the Global Energy and Water Exchanges (GEWEX) program launched the “Impact of Initialized Land Temperature and Snowpack on Subseasonal-to-Seasonal Prediction” (LS4P) initiative as a community effort to test the impact of land temperature in high-mountain regions on S2S prediction by climate models: more than 40 institutions worldwide are participating in this project. After using an innovative new land state initialization approach based on observed surface 2-m temperature over the TP in the LS4P experiment, results from a multimodel ensemble provide evidence for a causal relationship in the observed association between the Plateau spring land temperature and summer precipitation over several regions across the world through teleconnections. The influence is underscored by an out-of-phase oscillation between the TP and Rocky Mountain surface temperatures. This study reveals for the first time that high-mountain land temperature could be a substantial source of S2S precipitation predictability, and its effect is probably as large as ocean surface temperature over global “hotspot” regions identified here; the ensemble means in some “hotspots” produce more than 40% of the observed anomalies. This LS4P approach should stimulate more follow-on explorations.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Climate Dynamics, Springer Science and Business Media LLC, Vol. 62, No. 4 ( 2024-04), p. 2603-2628
    Abstract: The prediction skill for precipitation anomalies in late spring and summer months—a significant component of extreme climate events—has remained stubbornly low for years. This paper presents a new idea that utilizes information on boreal spring land surface temperature/subsurface temperature (LST/SUBT) anomalies over the Tibetan Plateau (TP) to improve prediction of subsequent summer droughts/floods over several regions over the world, East Asia and North America in particular. The work was performed in the framework of the GEWEX/LS4P Phase I (LS4P-I) experiment, which focused on whether the TP LST/SUBT provides an additional source for subseasonal-to-seasonal (S2S) predictability. The summer 2003, when there were severe drought/flood over the southern/northern part of the Yangtze River basin, respectively, has been selected as the focus case. With the newly developed LST/SUBT initialization method, the observed surface temperature anomaly over the TP has been partially produced by the LS4P-I model ensemble mean, and 8 hotspot regions in the world were identified where June precipitation is significantly associated with anomalies of May TP land temperature. Consideration of the TP LST/SUBT effect has produced about 25–50% of observed precipitation anomalies in most hotspot regions. The multiple models have shown more consistency in the hotspot regions along the Tibetan Plateau-Rocky Mountain Circumglobal (TRC) wave train. The mechanisms for the LST/SUBT effect on the 2003 drought over the southern part of the Yangtze River Basin are discussed. For comparison, the global SST effect has also been tested and 6 regions with significant SST effects were identified in the 2003 case, explaining about 25–50% of precipitation anomalies over most of these regions. This study suggests that the TP LST/SUBT effect is a first-order source of S2S precipitation predictability, and hence it is comparable to that of the SST effect. With the completion of the LS4P-I, the LS4P-II has been launched and the LS4P-II protocol is briefly presented.
    Type of Medium: Online Resource
    ISSN: 0930-7575 , 1432-0894
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2024
    detail.hit.zdb_id: 382992-3
    detail.hit.zdb_id: 1471747-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 14, No. 7 ( 2021-07-21), p. 4465-4494
    Abstract: Abstract. Subseasonal-to-seasonal (S2S) prediction, especially the prediction of extreme hydroclimate events such as droughts and floods, is not only scientifically challenging, but also has substantial societal impacts. Motivated by preliminary studies, the Global Energy and Water Exchanges (GEWEX)/Global Atmospheric System Study (GASS) has launched a new initiative called “Impact of Initialized Land Surface Temperature and Snowpack on Subseasonal to Seasonal Prediction” (LS4P) as the first international grass-roots effort to introduce spring land surface temperature (LST)/subsurface temperature (SUBT) anomalies over high mountain areas as a crucial factor that can lead to significant improvement in precipitation prediction through the remote effects of land–atmosphere interactions. LS4P focuses on process understanding and predictability, and hence it is different from, and complements, other international projects that focus on the operational S2S prediction. More than 40 groups worldwide have participated in this effort, including 21 Earth system models, 9 regional climate models, and 7 data groups. This paper provides an overview of the history and objectives of LS4P, provides the first-phase experimental protocol (LS4P-I) which focuses on the remote effect of the Tibetan Plateau, discusses the LST/SUBT initialization, and presents the preliminary results. Multi-model ensemble experiments and analyses of observational data have revealed that the hydroclimatic effect of the spring LST on the Tibetan Plateau is not limited to the Yangtze River basin but may have a significant large-scale impact on summer precipitation beyond East Asia and its S2S prediction. Preliminary studies and analysis have also shown that LS4P models are unable to preserve the initialized LST anomalies in producing the observed anomalies largely for two main reasons: (i) inadequacies in the land models arising from total soil depths which are too shallow and the use of simplified parameterizations, which both tend to limit the soil memory; (ii) reanalysis data, which are used for initial conditions, have large discrepancies from the observed mean state and anomalies of LST over the Tibetan Plateau. Innovative approaches have been developed to largely overcome these problems.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2456725-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...