GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Stem Cells International, Hindawi Limited, Vol. 2012 ( 2012), p. 1-6
    Abstract: Mesenchymal stromal cells (MSC) are tested in clinical trials to treat graft versus host disease (GvHD) after stem cell transplantation (SCT). In vitro studies demonstrated MSC's broad immunosuppressive activity. As infections represent a major risk after SCT, it is important to understand the role of MSC in this context. We analyzed 24 patients (pts) receiving MSC for GvHD in our Unit between 2009 and 2011. We recorded viral reactivations as measured in whole blood with polymerase chain reaction for 100 days following MSC administration. In patients with a documented viral reactivation in the first 3 days following MSCs infusion the frequency of virus-specific IFNgamma-producing cells was determined through enzyme-linked immunospot assay. In our cohort of patients viral reactivation after MSC infusion occurred in 45% of the cases, which did not significantly differ from the incidence in a historical cohort of patients affected by steroid resistant GvHD and treated with conventional immunosuppression. No patient presented severe form of infection. Two cases could be checked for immunological response to viral stimulus and demonstrated virus specific T-cytotoxic lymphocyte activity. In our experience MSC infusion did not prove to trigger more frequent or severer viral reactivations in the post transplantation setting.
    Type of Medium: Online Resource
    ISSN: 1687-966X , 1687-9678
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2012
    detail.hit.zdb_id: 2573856-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 472-472
    Abstract: Introduction Allogeneic Chimeric Antigen Receptor (CAR) T cells engineered with non-viral methods offer a modality to reduce costs and logistical complexity of the viral process and allow lymphodepleted patients to access CAR T cell treatment. We recently proposed the use of Sleeping Beauty (SB) transposon to engineer donor-derived T cells differentiated according to the cytokine-induced killer (CIK) cell protocol (Magnani CF et al. J Clin Invest. 2021). We report here outcomes on B-cell acute lymphoblastic leukemia (B-ALL) patients, relapsing after transplantation, treated with donor-derived anti-CD19 CAR T cells (CARCIK-CD19). Methods We conducted an academic, multi-center, phase I/II dose-escalation trial in patients relapsed after allogeneic hematopoietic stem cell transplantation (HSCT). The infusion product was manufactured in-house starting from 50 mL of peripheral blood from the HSCT donor by electroporation with GMP-grade plasmids. All patients underwent lymphodepletion with Fludarabine (30 mg/m 2/day x 4 days) and Cyclophosphamide (500 mg/m 2/day x 2 days), before proceeding to CARCIK-CD19 infusion. We used the Bayesian Optimal Interval (BOIN) design to define a four-dose escalation scheme. Primary objectives were to define the Maximum Tolerated Dose (MTD), safety, and feasibility. Secondary objectives included the assessment of complete hematologic response (CR), duration of response (DOR), progression-free (PFS), event-free (EFS), and overall survival (OS). This study was registered at ClinicalTrials.gov, NCT03389035. Results From January 2018 to June 2021, a total of 32 patients were screened, 26 enrolled (6 children and 20 adults) and 21 infused (4 children and 17 adults). Reasons for not receiving infusion included consent withdrawal (N=1), disease progression not controlled by bridging therapy (N=3), acquisition of myeloid phenotype (N=1). The median number of prior therapies was 4 (range, 1-7) with a median time interval from HSCT to relapse of 9 months. The median BM blasts was 60% (range, 5-100%) at enrollment and 7% (range, 0-96%) post lymphodepletion. Of the 21 patients infused, CARCIK-CD19 were obtained by HLA-identical sibling (n=6, 29%), matched unrelated (n= 7, 33%), and haploidentical donors (n=8, 38%). Three patients (14%) received the first dose level of 1x10 6 CARCIK-CD19 cells/Kg, three (14%) the second of 3x10 6, and three (14%) the third of 7.5x10 6 whereas 12 patients (57%) received the fourth and last planned dose level of 15x10 6 cells/Kg, as no dose limiting toxicity (DLT) was observed. CRS was observed in six patients (three grade I and three grade II) and immune effector cell-associated neurotoxicity in two patients at the highest dose. Although 9 out of 21 had experienced acute or chronic graft-versus-host disease (GvHD) after the previous HSCT, secondary GvHD was never induced by CARCIK-CD19. Complete response was achieved by 13 out of 21 patients (61.9%, 95%CI=38-82%) and by 11 out of 15 patients treated with the 2 highest doses (73.3%, 95%CI=45-92%). Eleven of these responders were MRD-negative. Notably, the type of donor did not influence the achievement of CR 28 days post-infusion. At a median follow up of 21.6 months (range, 1.0-38.4 months), 10 patients (47.6%) are alive in CR (9 in the 2 highest dose levels). Overall, the median OS and EFS were 9.7 and 3.2 months, respectively, with a median DOR of 4.0 months (range, 1.0-23.5 months). Patients in CR at 28-days had a 6-months relapse-free survival of 48.4% (SE=14.9). EFS at 6 months was 26.5% (SE=9.9) and OS was 67.6% (SE=11.1). Among the 13 patients who achieved CR, two children underwent consolidation with a second allo-HSCT in complete remission. Adult patients did not receive any additional anti-leukemic therapies unless a relapse occurred, and four of them remained in remission and alive (+24, +9, +6, and +4 months). Robust CARCIK-CD19 cell expansion was achieved in most patients and CARCIK-CD19 cells were measurable for up to 22 months. Conclusions SB-engineered CAR T cells induce sustained responses in B-ALL patients relapsed after HSCT irrespective of the donor type and without severe toxicities. Disclosures Lussana: Incyte: Honoraria; Pfizer: Honoraria; Astellas Pharma: Honoraria; Amgen: Honoraria. Gritti: Takeda: Consultancy; Roche: Consultancy; Kite Gilead: Consultancy; IQvia: Consultancy; Italfarmaco: Consultancy; Clinigen: Consultancy. Biondi: Incyte: Consultancy, Other: Advisory Board; Bluebird: Other: Advisory Board; Novartis: Honoraria; Amgen: Honoraria; Colmmune: Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 112, No. 11 ( 2008-11-16), p. 1171-1171
    Abstract: Background Very recently, encouraging results indicate that third party human mesenchymal stromal cells (hMSCs) are a rapidly available therapeutic tool for the treatment of severe (grade III–IV), steroid resistant, acute graft versus host disease (aGVHD). In the clinical experience published so far, hMSCs have been expanded in Fetal Bovine Serum (FBS), which may constitute a problem for its antigenicity and as a possible vehicle of animal pathogens. We have established a highly efficient protocol for the in vitro expansion, under strict GMP compliance, of bone marrow derived hMSCs using human platelets lysate (PL) in place of FBS (Capelli C. et al.: BMT, 2007). In this study, upon Ethical Committee approval and patient’s informed consent, hMSCs were administered on a compassionate basis for the treatment of refractory GVHD. Methods hMSCs were prepared from washouts of bags and filters, left over at the end of the standard filtration procedures of the bone marrow harvests from third party HLA mismatched healthy donors. Cells were grown in the presence of DMEM with 5% PL obtained from the Blood Bank of our Hospitals. In a short period of time (10–33 days), low density seeding of unmanipulated cells (100–200/cm2), obtained from 7 bone marrow harvests allowed to prepare large quantities of hMSCs (median 115×106, range: 67–375), with only one in vitro passage. Twenty-three frozen bags of hMSCs (each containing approximately 1×106/kg of recipient body weight) have been quarantined until the completion of quality tests, including viability, phenotype, absence of detectable bacteria, fungi, mycoplasma or endotoxin, according to European Pharmacopea guidelines. Differentiation to osteogenic and chondrogenic cells as well as the immunosuppressive potential of these cells was confirmed when tested in mixed lymphocyte reaction (MLR). Q banding and clonogenic assays were performed for each batch and never showed abnormalities of karyotype or autonomous growth in vitro. Results Two adult and 4 pediatric patients were treated for aGVHD (grade II–IV) and 2 adults for extensive chronic GVHD (cGVHD) between January and July 2008, using 12 hMSCs bags that had completed quarantine. Before hMSCs, second or third line treatments had been given to patients with aGVHD, including Etanercept (n= 5), Mycophenolate Mofetil (MMF, n= 4) and Extracorporeal Photopheresis (ECP, n= 3), Rituximab (1 patient). Patients with cGVHD were previously treated with ECP and MMF (n= 2), Imatinib (n= 1) and Etanercept (n= 1). Each infusion contained a median dose of 1×106/kg (range, 0.7–1.2×106) hMSCs. For patients with aGVHD, a single infusion was performed in 4 pediatric patients while 1 and 3 infusions were performed in 2 adult patients. The 2 patients with cGVHD received 1 and 4 infusions, respectively. All infusions were very well tolerated with no immediate or late adverse events according to WHO common criteria. Among pediatric patients with aGVHD, 3 complete and 1 partial responses were registered and all patients are alive and in complete hematologic remission. A complete response was observed in 1 adult with grade III cutaneous aGVHD although the patient rapidly relapsed and died of leukemia progression. No response was observed in the other adult patient who died of progressive grade IV gut and liver aGVHD. The 2 adult patients with cGVHD had both a partial response and are alive. Conclusions These data show that large numbers of third party hMSCs can be expanded in vitro with PL containing medium and stored for immediate use in patients with GVHD. Moreover, the clinical results and the toxicity profile confirm those reported with hMSCs expanded in FBS containing media.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 10339-10340
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 34-34
    Abstract: Background Significant efforts over the past few years led Chimeric Antigen Receptor (CAR) T cell therapy to success in relapsed and refractory (r/r) B-cell malignancies. Still logistical complexity, high costs and toxicities are currently the main barriers to the use of CAR T cell therapy. We therefore propose non-viral engineering of an allogeneic T cell population according to cytokine induced killer (CIK) cell protocol of differentiation. Methods We reported the updated results of our phase I/II trial in B-cell acute lymphoblastic leukemia (B-ALL) patients relapsed after allogeneic hematopoietic stem cell transplantation (HSCT) using donor-derived CD19 CAR T cells generated with the Sleeping Beauty (SB) transposon and differentiated into CIK (CARCIK-CD19) according to the method enclosed in the filed patent EP20140192371. After lymphodepletion with Fludarabine (30 mg/m2/day) x 4 days and Cyclophosphamide (500 mg/m2/day) x 2 days, CARCIK-CD19 were infused following a four-dose escalation scheme (1x106, 3x106, 7.5x106 and 15x106 transduced CAR+ T cells/kg) according to the Bayesian Optimal Interval Design (BOIN). During the cell manufacturing period, bridging anti leukemic therapy from patient registration to the beginning of the lymphodepletion, was allowed. The primary endpoint was to define the Maximum Tolerated Dose (MTD) and the safety assessment. Key secondary endpoints included the assessment of complete hematologic response (CR), defined as & lt; 5% bone marrow (BM) blasts, circulating blasts & lt; 1%, no clinical evidence of extramedullary disease, as well as the characterization of CARCIK-CD19 persistence in PB and BM (NCT03389035). Results The cellular product was produced successfully for all patients starting from the donor-derived peripheral blood (PB) and consisted mostly of CD3+ lymphocytes (mean 98.85% ±SD 1.19%) with a mean of 38.6% CAR expression (range 15.10%-73.17%). From January 2018 to July 2020, a total of 24 patients were screened, and 15 were enrolled (4 children and 11 adults) and infused with a single dose of CARCIK-CD19 (n=3 HLA identical sibling, n=4 MUD, n=8 haploidentical donor). The leukemic burden in the BM post lymphodepletion/pre-infusion ranged from 0% to 96%. Robust expansion was achieved in the majority of the patients. The maximal expansion reached about 1x106 transgene copies per μg DNA and 70% of CAR+ T cells in PB. CD8+ T cells represented the predominant circulating CAR+ T cell subset. Persistence of central memory CAR+ T cells was observed after infusion and CAR T cells were measurable up to 9 months. CARCIK-CD19 were characterized by a high profile of safety in all treated patients. Toxicities reported were two grade I and two grade II cytokine release syndrome (CRS) cases at the highest dose in the absence of graft-versus-host disease (GvHD), neurotoxicity, or dose-limiting toxicities. Seven out of 9 patients, receiving the highest doses, achieved CR and CRi at day 28. MRD-negative status for all responders was achieved by 6 out of 9 patients (1 currently in evaluation). The two patients in CR but with MRD+ relapsed with a CD19+ disease at +2.3 and +1.9 months post infusion, respectively. Among the 6 patients who achieved MRD-negative CR, two children underwent consolidation with a second allo-HSCT and are still alive and disease free (+17 and +13 months), two adult patients died of subsequent CD19+ disease relapse and two adult patients are still alive and disease free (+14 and +12 months) without additional therapies. The distribution profile of integration sites (IS) showed no preference for gene dense or promoter regions, and no particular differences between pre- and post- infusion sample IS. Samples harvested at early time points after infusion showed a highly polyclonal repertoire. At later time points (≥ 28 days after infusion) the repertoire of IS showed a marked reduction towards oligoclonality, in absence of specific dominant clones. Conclusions We can conclude that SB-engineered CAR T cells expand and persist in pediatric and adult B-ALL patients relapsed after HSCT. Sustained response was achieved without severe toxicities. All analyzed samples appear to have a highly polyclonal IS repertoire and no signs of genotoxicity by transposon insertions could be observed. Disclosures Gritti: IQVIA: Consultancy; Amgen: Honoraria; Autolus: Consultancy; Italfarmaco: Consultancy; F. Hoffmann-La Roche Ltd: Honoraria; Jannsen: Other: Travel Support; Takeda: Honoraria; Kite: Consultancy. Rambaldi:Sanofi: Honoraria, Other: TRAVEL, ACCOMMODATIONS, EXPENSES (paid by any for-profit health care company); Omeros: Honoraria, Other: TRAVEL, ACCOMMODATIONS, EXPENSES (paid by any for-profit health care company); Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: TRAVEL, ACCOMMODATIONS, EXPENSES (paid by any for-profit health care company). Research grant from Amgen Inc.; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: TRAVEL, ACCOMMODATIONS, EXPENSES (paid by any for-profit health care company). Advisory board and speaker fees from Pfizer.; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: TRAVEL, ACCOMMODATIONS, EXPENSES (paid by any for-profit health care company); Gilead: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel support from Gilead.; Roche: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Support of parent study and funding of editorial support. Received travel support., Research Funding; University of Milan: Current Employment; BMS/Celgene: Honoraria, Other: TRAVEL, ACCOMMODATIONS, EXPENSES (paid by any for-profit health care company); Astellas: Honoraria, Other: TRAVEL, ACCOMMODATIONS, EXPENSES (paid by any for-profit health care company).
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Biology of Blood and Marrow Transplantation, Elsevier BV, Vol. 20, No. 3 ( 2014-03), p. 375-381
    Type of Medium: Online Resource
    ISSN: 1083-8791
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2014
    detail.hit.zdb_id: 3056525-X
    detail.hit.zdb_id: 2057605-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 1160-1160
    Abstract: Introduction: Patients with disease relapse after allogeneic transplantation (alloHSCT) have a poor prognosis. Donor lymphocyte infusion (DLI) is one of the main clinical options to salvage patients in relapse after transplant. Cytokine Induced Killer (CIK) cells are in vitro activated and expanded T lymphocytes which have acquired NK like cytotoxicity as well as CD56 expression. CIK cells have shown Graft versus Leukemia (GvL) activity with little GvHD and therefore may represent an ideal candidate to treat post-transplant relapse. We report the final results of a phase II multicenter pilot study, whose objective was to evaluate the safety and efficacy of sequential administration of donor derived unmanipulated DLI and CIK cells in patients with recurrent hematologic cancers after alloHSCT. Methods Seventy-four patients relapsed after alloHSCT, performed using either a matched related (N=42) or unrelated donor (n= 32), were enrolled in the study. This phase II multicenter study was authorized by Istituto Superiore di Sanità, as for Advanced Therapeutic Medicinal Product (ATMP) regulations, and approved by the Agenzia Italiana del Farmaco (AIFA). The trial was registered as (EUDRACT number 2008-003185-26, ClinicalTrial.gov : NCT01186809). Results Among the 74 patients (including 16 children and 58 adults) enrolled into this study (median age 45, range 1-67), 20 had a diagnosis of ALL (27%), 41 of AML (55%), 4 of MM (5%), 3 of HD (4%), 2 of NHL (3%) and 4 of MPN (5%). All patients relapsed after matched allogeneic transplants (32 unrelated and 42 sibling), of whom 44 (59%) suffered from a hematological, 4 (5%) from a cytogenetic and 26 (35%) from a molecular relapse. The therapeutic strategy consisted of two infusions of unmanipulated DLI (each of 1 x 106/kg cells) at 3 weeks interval, followed by three infusions of donor derived CIK cells given at 3 weeks interval. The first 12 patients were treated with increasing numbers of CIK cells, in groups of three patients per dose level. Since dose limiting toxicity (DLT) was never observed (acute GVHD of grade III or more), the highest dose planned (5 x 106/kg, 5 x 106/kg and 10 x 106/kg) was then administered to all patients. Ten patients died for disease progression, 1 patient developed aGVHD (grade I, skin only) and 1 withdrawn for medical decision before or during the DLI treatment and could not proceed to the planned subsequent CIK administration. Sixty-two patients received at least one infusion of CIK cells, of whom 43 patients (61%) completed the cell therapy program, while 3 patients are still under treatment. The study flow is outlined in Figure 1. As per protocol, clinical response was determined 100 days after the last CIK administration and the study was analyzed on an intent to treat basis. An early death occurred in 24 (32%) patients (4 during the DLI), no response was observed in 18 (24%) patients, a stable disease in 1 patient (1%), a complete remission in 21 (28%) and a partial remission in 6 (8%), for an overall response rate of 36%. In 4 patients clinical response could not be evaluated (3 patients still in treatment and 1 withdrawn from the protocol). Acute GVHD was observed in a total of 11 patients (15%): grade 1 (n=4), 2 (n=2) and 3-4 (n=5). During follow up, chronic GVHD was observed in 8 patients (11 %) (3 mild, 4 moderate and 1 severe). By univariate analysis, progression free survival (PFS) and overall survival (OS) were significantly associated (p 〈 0.0001) with the type of relapse since at 3 years it was 11% and 23% vs. 54% and 77 % for patients enrolled due to a hematologic vs. a molecular/cytogenetic relapses, respectively (Figure 2A-B). By multivariate analysis, the type of relapse remained the only significant predictor of survival (p=0.0019). Conclusion Our study shows that administration of CIK cells is feasible in patients with recurrent hematologic cancer after alloHSCT with a relatively low toxicity in terms of GvHD. Particularly in the setting of the molecularly relapsed patients, long-term survival can be achieved. In future studies, we are planning to test CIK cells in preventing post-transplantation relapse in high risk AML. Finally, CIK cells may represent an innovative platform to transduce chimeric antigen receptors in allogeneic T cells with a reduced risk to induce GvHD. Disclosures Biondi: Cellgene: Other: Advisory Board; BMS: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Other: Advisory Board.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 196-196
    Abstract: Background: Acute lymphoblastic leukemia (ALL) is a malignant disorder with a long-term remission of less than 50% of adult patients and of nearly 80% of children. Relapsed and refractory (r/r) adult and childhood B-ALL patients, have significant unmet medical needs. Adoptive transfer of patient-derived T cells engineered to express a chimeric antigen receptor (CAR) by viral vectors has achieved complete remission and durable response in highly refractory populations (June CH et al. Science 2018). In addition, unmodified Cytokine Induced Killer (CIK) cells (CD3+, CD56+ T cells) have clearly demonstrated a high profile of safety in ALL patients (Introna M et al. Biol Blood Marrow Transplant. 2017). Here, we demonstrate the feasibility and reproducibility of a GMP-compliant clinical-grade culture and gene-modification protocol of allogeneic CIK cells using the non-viral Sleeping Beauty (SB) transposon system (Singh H et al, Plos One 2013) to obtain CD19CAR expressing CIK cells (Magnani CF et al, Oncotarget 2016, Magnani CF et al, Hum Gene Ther. 2018, Biondi A et al. J Autoimmun. 2017) starting from a limited amount of an easily available material such as peripheral blood (PB). Methods: Fifty mL of PB were centrifuged on Ficoll gradient to obtain mononuclear cells (PBMCs). PBMCs were then simultaneously electro-transferred with the SB GMP-grade DNA transfer CD19.CAR/pTMNDU3 plasmid (human 3rd generation anti-CD19CD28OX40z CAR under the pTMNDU3 promoter), and transposase pCMV-SB11 plasmid (kindly provided by L. Cooper, MDACC, Houston, TX, USA). CIK populations (Introna M et al, Haematologica 2007) were then generated according to the method enclosed in the filed patent EP20140192371 (Magnani CF et al, Oncotarget 2016). The manufacturing process and the quality control tests were performed in a good manufacturing practices (GMP) academic cell factory authorized by Agenzia Italiana del Farmaco (AIFA) in the context of an ongoing phase I clinical trial (NCT03389035) for children and adults with relapsed/refractory B-cell precursor ALL post hematopoietic stem cell transplantation (HSCT). Results: We manufactured nine batches by seeding a mean of 102.52x106 allogeneicPBMCs derived from 50 ml of peripheral blood (range 46.1 - 193.17x106). After 21-22 days of culture the mean harvesting was 5.0x109 nucleated cells (range 1.15 - 16.00x109) with a mean viability of 97.56% (min. 95.24% - max 99.43%). These cells were mostly CD3+ lymphocytes (mean 98.54%, min. 94.85% - max 99.68%) which had a median fold increase of 87.3. Expanded CD3+ cells expressed CD56+ and surface CAR at variable levels among the batches (mean 44.79% and 43.78%, respectively) and had a median vector copy number (VCN) of 2.56 VCN/cells, according to pre-clinical data (Magnani CF et al, Hum Gene Ther. 2018). In all the nine batches, CARCIK-CD19 cells demonstrated potent and specific in vitro cytotoxicity towards the CD19+ REH target cell line (mean 82.96%, min. 61.89% - max 97.72%). Cell products appear to be highly polyclonal and no signs of genotoxicity by transposon insertions could be observed by integration site (IS) analysis performed by Sonication Linker Mediated (SLiM)-PCR and Illumina MiSeq sequencing. The GMP batches were released after about 10 days after the end of production. Quality control release specifications and results are reported in Table 1. Conclusions: Overall, these results demonstrate that clinical-grade SB transduction of allogeneic CIK cells with CD19 CAR is feasible and allows rapid and efficient expansion of highly potent CARCIK-CD19 cells starting from easily available small amounts of PB, with important implications for non-viral technology. In summary our data represent a solid ground for the future development of further SB-based platforms. A clinical trial investigating allogeneic CARCIK-CD19 in r/r pediatric and adult ALL post HSCT is currently ongoing (NCT03389035). Disclosures Gritti: Autolus: Consultancy. Rambaldi:Celgene: Consultancy; Omeros: Consultancy; Novartis: Consultancy; Italfarmaco: Consultancy; Pfizer: Consultancy; Amgen Inc.: Consultancy; Roche: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 200-200
    Abstract: Background Immunotherapy using patient-derived CAR T cells has achieved complete remission and durable response in highly refractory populations. However, logistical complexity and high costs of manufacturing autologous viral products limit CAR T cell availability. Allogeneic Cytokine Induced Killer (CIK) cells, a T-cell population characterized by the enrichment of CD3+CD56+ cells, have demonstrated a high profile of safety in acute lymphoblastic leukemia (ALL) patients (Introna M et al. Biol Blood Marrow Transplant. 2017). CIK cells could be easily engineered by the non-viral Sleeping Beauty (SB) transposon for the clinical application (Magnani CF et al, Hum Gene Ther. 2018, Biondi A et al. J Autoimmun. 2017). Methods CIK cells were generated from 50 ml of donor-derived peripheral blood (PB) by electroporation with the GMP-grade CD19.CAR/pTMNDU3 and pCMV-SB11 plasmids according to the method enclosed in the filed patent EP20140192371. After lymphodepletion with Fludarabine (30 mg/m2/day) x 4 days and Cyclophosphamide (300 mg/m2/day) x 2 days, CARCIK-CD19 were infused in pediatric and adult B-cell ALL (B-ALL) patients relapsed after allogeneic hematopoietic stem cell transplantation (HSCT). The clinical trial follows a four-dose escalation scheme (1x106, 3x106, 7.5x106 and 15x106 transduced CAR+ T cells/kg) using the novel Bayesian Optimal Interval Design (BOIN). During the cell manufacturing period, bridging anti leukemic therapy from patient registration to the beginning of the lymphodepletion, was allowed. The primary endpoint was to define the Maximum Tolerated Dose (MTD) and a safety assessment. Key secondary endpoints included the assessment of complete hematologic response (CR), defined as & lt; 5% bone marrow (BM) blasts, circulating blasts & lt; 1%, no clinical evidence of extramedullary disease, as well as the characterization of CARCIK-CD19 persistence in PB and BM (NCT03389035). Results We manufactured eighteen batches by seeding a median of 126.8x106 allogeneicPBMCs. At the end of expansion, the mean harvesting was 6.46x109 nucleated cells (range 1.39 - 16.00x109). Manufactured cells were mostly CD3+ lymphocytes (mean 98.90% ±SE 0.30%). Of these, 43.57%±3.73% were CAR+, 47.07%±2.74% were CD56+, 80.44%±2.53% were CD8+. The quality requirements for batch release were met in 17 productions. As of the data cut-off date (July 19, 2019), 4 pediatric and 7 adult patients were infused with a single dose of CARCIK-CD19 (n=2 HLA identical sibling, n=4 MUD, n=5 haploidentical donor). The leukemic burden in the BM post lymphodepletion/pre-infusion ranged from 0% to 96%. CARCIK-CD19 were characterized by a high profile of safety in all treated patients. Toxicities reported were a grade I cytokine release syndrome and an infusion-related DMSO-associated seizure, with absence of dose-limiting toxicities, neurotoxicity and graft-versus-host disease (GvHD) in any of the treated patients. Four out of 5 patients, receiving the highest doses, achieved CR and CRi at day 28. The 3 patients in CR were also MRD- (by flow cytometry and RT-PCR) while the CRi was MRD+ and relapsed at day+49. Robust expansion was achieved in the majority of the patients as defined by detectable CAR T-cell detection (vector copy number VCN, range 4645-977992 transgene copies/ug) and flow (range 0.5-30%) in PB. The median time to peak engraftment was 14 days. The magnitude of expansion was correlated with the CD19+ burden in the BM at the time of the infusion (P value = 0.0006, R square 0.7469). CD8+ T cells represented the predominant CARCIK-CD19 T-cell subset (78.88%±5.33% d14 n=6) along with CD3+CD56+ CIK cells and CD4+ T cells to a lesser extent. The majority of CAR T cells had a central and effector memory phenotype. CAR T cells were measurable by VCN up to 6 months with a mean persistence of 70.5 ± 14.85 days (follow up ranging from 28 days to 1 year). No major difference was observed by integration analyses of the patients' PB and the cell products. The vector integration sites reflected the classical random distribution of SB without any tendency for gene dense regions. Conclusions Our ongoing phase I/II trial demonstrates that SB-engineered CARCIK-CD19 cells are able to expand and persist in pediatric and adult B-ALL patients relapsed after HSCT, with important implications for a non-viral technology. These encouraging results prompted us to expand our study. Disclosures Gritti: Autolus Ltd: Honoraria; Roche: Other: Not stated; Abbvie: Other: Not stated; Becton Dickinson: Other: Not stated. Rambaldi:Celgene: Membership on an entity's Board of Directors or advisory committees, Other: travel support, Speakers Bureau; Roche: Membership on an entity's Board of Directors or advisory committees, Other: travel support, Research Funding, Speakers Bureau; Jazz: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau, travel support; Pfizer: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Gilead: Membership on an entity's Board of Directors or advisory committees, Other: travel support, Speakers Bureau; Amgen: Membership on an entity's Board of Directors or advisory committees, Other: travel support, Research Funding, Speakers Bureau; Novartis: Membership on an entity's Board of Directors or advisory committees, Other: travel support, Speakers Bureau; Italfarmaco: Membership on an entity's Board of Directors or advisory committees, Other: travel support, Research Funding, Speakers Bureau; Omeros: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 743-743
    Abstract: Abstract 743 Background: Acute Graft versus host disease (aGvHD) is a severe complication of allogeneic hematopoietic stem cell transplantation (HSCT). Conventional treatment with high dose steroids fails to achieve a complete and sustained response in more than 50% of patients. Several second line treatments have been described but none of these can be considered superior or a standard of care (Paul J. Martin et al, BBMT 2012). Among these treatments, the use of third party mesenchymal stromal cells (MSC) has been proposed (LeBlanc et al, Lancet 2008). In this study, we assessed the safety and efficacy of third party human MSC, in a prospective, multicenter, phase I study (EudraCT 2008–007869-23). Methods: Forty-seven patients with steroid-resistant, acute or chronic grade II-IV GvHD were enrolled into this study. Human MSC were obtained from bone marrow harvests of healthy donors and expanded in vitro using serum free medium supplemented with human platelet lysate (Capelli C et al, BMT, 2007; Capelli C. et al, Cytotherapy 2009). In vitro expanded MSC were produced in two officially authorized Cell Factories and tested in four Italian Hematology Units. The primary endpoint of this study was the safety. Secondary endpoints were the response of GvHD (evaluated 28 days after the last MSC infusion), as well as the overall survival and transplant-related deaths. Blood samples were periodically collected before and after MSC infusion to measure plasma levels of IL2Ralpha by ELISA, as previously described by our group (Dander E et al, Leukemia 2012). Results: Between August 2009, and June 2012, 47 patients (16 children, 31 adults, median age 25.5 years, range 1 to 67) were treated. The median dose of infused MSC was 1.5×106 cells per kg bodyweight. Enrolled patients presented with aGvHD in 37 cases, chronic overlap syndrome in 7 cases, and chronic classic GvHD in 3 cases. Fifteen pts had grade II GvHD, 23 grade III and 9 grade IV, according to NIH criteria. In 17 cases GvHD involved a single organ, in 24 cases 2, and in 6 cases 3 organs. Prior to MSC infusion 22 patients had received only high dose steroids, 12 patients received one cycle of pentostatin (1 mg/kg bodyweight for 3 days, Schmitt T. et al BMT, 2011: 46 580–585), while 13 received other conventional immunosuppressants. Patients received a median of 3 MSC infusions (range 1 to 8). No side effects were registered immediately after MSC infusion and no complications were lately referred as MSC-related. Overall, in 30 patients (63.8%) a clinical response of GvHD was registered. Thirteen of these patients (27.6%) had a complete response and 17 (36.1%) a partial response to treatment. Twenty-two of the 30 responding patients did not require further lines of immunosuppression after MSC infusion. Response was significantly more likely in patients exhibiting grade II GvHD versus those exhibiting more severe gradings (87.5% vs. 51.6%, p = 0.02) and in patients receiving MSC in a time interval of 30 days from the onset of GvHD (75.9% vs. 43.7%, p= 0.05). Current median follow up for this cohort is 200 days (range 30–1066). Responders show a significant lower transplant-related mortality (10.0% vs. 88.2%, p 〈 0.05) and a better overall survival probability than non responders (23.3% vs. 88.2%, p 〈 0.05, Fig. 1). Within the limit of a small subgroup analysis, adult patients receiving pentostatin before MSC had an apparent better response and survival (65% vs 27%, at 1 year), without an increased risk of infections. Measurements of plasmatic levels of IL2Ralpha, when comparing responders vs non-responders patients, showed a statistically significant difference in terms of fold decrease of the marker (p=0.027), corroborating clinical results. Similarly, a significant trend of fold decrease change (p=0.058) was observed when comparing responding patients receiving MSC within or after 30 days from the onset of the disease, in line with clinical results. Conclusions: This study confirms that human MSC prepared in academic cell therapy facilities may represent a safe and effective treatment of patients with steroid-refractory GvHD. Plasmatic inflammatory markers may help in evaluating and monitoring of clinical response. The sequential or combined administration of MSC and other immunosuppressants, such as pentostatin, is equally safe and feasible and deserves further investigation. We suggest to consider the use of MSC promptly, as early as possible, after steroid failure. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...