GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Springer Science and Business Media LLC  (3)
  • Bai, Zhaofang  (3)
Materialart
Verlag/Herausgeber
  • Springer Science and Business Media LLC  (3)
Sprache
Erscheinungszeitraum
  • 1
    In: Molecular Medicine, Springer Science and Business Media LLC, Vol. 29, No. 1 ( 2023-07-03)
    Kurzfassung: Abnormal activation of NLRP3 inflammasome is related to a series of inflammatory diseases, including type 2 diabetes, gouty arthritis, non-alcoholic steatohepatitis (NASH), and neurodegenerative disorders. Therefore, targeting NLRP3 inflammasome is regarded as a potential therapeutic strategy for many inflammatory diseases. A growing number of studies have identified tanshinone I (Tan I) as a potential anti-inflammatory agent because of its good anti-inflammatory activity. However, its specific anti-inflammatory mechanism and direct target are unclear and need further study. Methods IL-1β and caspase-1 were detected by immunoblotting and ELISA, and mtROS levels were measured by flow cytometry. Immunoprecipitation was used to explore the interaction between NLRP3, NEK7 and ASC. In a mouse model of LPS-induced septic shock, IL-1β levels in peritoneal lavage fluid and serum were measured by ELISA. Liver inflammation and fibrosis in the NASH model were analyzed by HE staining and immunohistochemistry. Results Tan I inhibited the activation of NLRP3 inflammasome in macrophages, but had no effect on the activation of AIM2 or NLRC4 inflammasome. Mechanistically, Tan I inhibited NLRP3 inflammasome assembly and activation by targeting NLRP3-ASC interaction. Furthermore, Tan I exhibited protective effects in mouse models of NLRP3 inflammasome-mediated diseases, including septic shock and NASH. Conclusions Tan I specifically suppresses NLRP3 inflammasome activation by disrupting the association of NLRP3 and ASC, and exhibits protective effects in mouse models of LPS-induced septic shock and NASH. These findings suggest that Tan I is a specific NLRP3 inhibitor and may be a promising candidate for treating NLRP3 inflammasome-related diseases. Graphical Abstract
    Materialart: Online-Ressource
    ISSN: 1528-3658
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2023
    ZDB Id: 1475577-4
    ZDB Id: 1283676-X
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 2023
    In:  Journal of Translational Medicine Vol. 21, No. 1 ( 2023-10-07)
    In: Journal of Translational Medicine, Springer Science and Business Media LLC, Vol. 21, No. 1 ( 2023-10-07)
    Kurzfassung: Nonalcoholic steatohepatitis (NASH) is a progressive and inflammatory subtype of nonalcoholic fatty liver disease (NAFLD) characterized by hepatocellular injury, inflammation, and fibrosis in various stages. More than 20% of patients with NASH will progress to cirrhosis. Currently, there is a lack of clinically effective drugs for treating NASH, as improving liver histology in NASH is difficult to achieve and maintain through weight loss alone. Hence, the present study aimed to investigate potential therapeutic drugs for NASH. Methods BMDMs and THP1 cells were used to construct an inflammasome activation model, and then we evaluated the effect of epalrestat on the NLRP3 inflammasome activation. Western blot, real-time qPCR, flow cytometry, and ELISA were used to evaluate the mechanism of epalrestat on NLRP3 inflammasome activation. Next, MCD-induced NASH models were used to evaluate the therapeutic effects of epalrestat in vivo. In addition, to evaluate the safety of epalrestat in vivo, mice were gavaged with epalrestat daily for 14 days. Results Epalrestat, a clinically effective and safe drug, inhibits NLRP3 inflammasome activation by acting upstream of caspase-1 and inducing ASC oligomerization. Importantly, epalrestat exerts its inhibitory effect on NLRP3 inflammasome activation by inhibiting the activation of aldose reductase. Further investigation revealed that the administration of epalrestat inhibited NLRP3 inflammasome activation in vivo , alleviating liver inflammation and improving NASH pathology. Conclusions Our study indicated that epalrestat, an aldose reductase inhibitor, effectively suppressed NLRP3 inflammasome activation in vivo and in vitro and might be a new therapeutic approach for NASH. Graphical Abstract
    Materialart: Online-Ressource
    ISSN: 1479-5876
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2023
    ZDB Id: 2118570-0
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Cell Death Discovery, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2022-07-09)
    Kurzfassung: Increased medical application of psychotropic drugs raised attention concerning their toxicological effects. In fact, more than 160 psychotropic drugs including antidepressants and antipsychotics, have been shown to cause liver side effects, but the underlying mechanisms are still poorly understood. Here, we discovered that fluoxetine, a common antidepressant, was specifically sensed by NLRP3 inflammasome, whose subsequent activation resulted in the maturation of caspase-1 and IL-1β, as well as gasdermin D (GSDMD) cleavage, which could be completely abrogated by a selective NLRP3 inhibitor MCC950 or Nlrp3 knockout ( Nlrp3 −/− ). Mechanistically, mitochondrial damage and the subsequent mitochondrial reactive oxygen species (mtROS) accumulation were crucial upstream signaling events in fluoxetine-triggered NLRP3 inflammasome activation. In fluoxetine hepatotoxicity models, mice showed the alterations of aminotransferase levels, hepatic inflammation and hepatocyte death in an NLRP3-dependent manner, and MCC950 pretreatment could reverse these side effects of fluoxetine. Notably, we also found that multiple antidepressants, such as amitriptyline, paroxetine, and imipramine, and antipsychotics, such as asenapine, could specifically trigger the NLRP3 inflammasome activation. Collectively, our findings implicate multiple psychotropic drugs may act as danger signals sensed by the NLRP3 inflammasome and result in hepatic injury.
    Materialart: Online-Ressource
    ISSN: 2058-7716
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2022
    ZDB Id: 2842546-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...