GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (1)
  • Bai, Hua  (1)
Material
Publisher
  • American Association for Cancer Research (AACR)  (1)
Language
Years
Subjects(RVK)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 1 ( 2019-01-01), p. 7-20
    Abstract: Osteosarcoma is the most common primary bone malignancy, and the lung is the most frequent site of metastasis. The limited understanding of the tumoral heterogeneity and evolutionary process of genomic alterations in pulmonary metastatic osteosarcoma impedes development of novel therapeutic strategies. Here we systematically illustrate the genomic disparities between primary tumors and corresponding pulmonary metastatic tumors by multiregional whole-exome and whole-genome sequencing in 86 tumor regions from 10 patients with osteosarcoma. Metastatic tumors exhibited a significantly higher mutational burden and genomic instability compared with primary tumors, possibly due to accumulation of mutations caused by a greater number of alterations in DNA damage response genes in metastatic tumors. Integrated analysis of the architecture and relationships of subclones revealed a dynamic mutational process and diverse dissemination patterns of osteosarcoma during pulmonary metastasis (6/10 with linear and 4/10 with parallel evolutionary patterns). All patients demonstrated more significant intertumoral rather than intratumoral heterogeneity between primary tumors and metastatic tumors. Mutated genes were enriched in the PI3K–Akt pathway at both the early and late stages of tumor evolution and in the MAPK pathway at the metastatic stage. Conversely, metastatic tumors showed improved immunogenicity, including higher neoantigen load, elevated PD-L1 expression, and tumor-infiltrating lymphocytes than the corresponding primary tumors. Our study is the first to report the dynamic evolutionary process and temporospatial tumor heterogeneity of pulmonary metastatic osteosarcoma, providing new insights for diagnosis and potential therapeutic strategies for pulmonary metastasis. Significance: High-throughput sequencing of primary and metastatic osteosarcoma provides new insights into the diagnosis of and potential clinical therapeutic strategies for pulmonary metastasis.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...