GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Royal Society of Chemistry (RSC)  (1)
  • Bae, Hyung-Bin  (1)
Material
Publisher
  • Royal Society of Chemistry (RSC)  (1)
Language
Years
  • 1
    In: Dalton Transactions, Royal Society of Chemistry (RSC), Vol. 52, No. 7 ( 2023), p. 1885-1894
    Abstract: Since the high configurational entropy-driven structural stability of multicomponent oxide system was proposed Rost et al. in 2015, many experiments and simulations have been done to develop new multicomponent oxides. Although many notable findings have shown unique physical and chemical properties, high configurational entropy oxide systems that have more than 3 distinct cation sites are yet to be developed. By utilizing atomic-scale direct imaging with scanning transmission electron microscopy and AC-impedance spectroscopy analysis, we demonstrated for the first time that a multicomponent equimolar proton-conducting quadruple hexagonal perovskite-related Ba 5 RE 2 Al 2 ZrO 13 (RE = rare earth elements) oxide system can be synthesized even when adding eight different rare earth elements. In particular, as the number of added elements was increased, i.e. , as the configurational entropy was increased, we confirmed that the chemical stability toward CO 2 was improved without a significant decrement of the proton conductivity. The findings in this work broaden the use of the crystal structure to which the multicomponent model can be applied, and a systematic study on the correlation between the configurational entropy and proton conductivity and/or chemical stability is noteworthy.
    Type of Medium: Online Resource
    ISSN: 1477-9226 , 1477-9234
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2023
    detail.hit.zdb_id: 1472887-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...