GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (5)
  • Backert, Steffen  (5)
  • Meyer, Thomas F.  (5)
Material
Publisher
  • American Society for Microbiology  (5)
Language
Years
Subjects(RVK)
  • 1
    In: Infection and Immunity, American Society for Microbiology, Vol. 72, No. 2 ( 2004-02), p. 1043-1056
    Abstract: Helicobacter pylori is the causative agent of a variety of gastric diseases, but the clinical relevance of bacterial virulence factors is still controversial. Virulent strains carrying the cag pathogenicity island ( cag PAI) are thought to be key players in disease development. Here, we have compared cag PAI-dependent in vitro responses in H. pylori isolates obtained from 75 patients with gastritis, peptic ulcer, and gastric cancer ( n = 25 in each group). AGS gastric epithelial cells were infected with each strain and assayed for (i) CagA expression, (ii) translocation and tyrosine phosphorylation of CagA, (iii) c-Src inactivation, (iv) cortactin dephosphorylation, (v) induction of actin cytoskeletal rearrangements associated with cell elongation, (vi) induction of cellular motility, and (vii) secretion of interleukin-8. Interestingly, we found high but similar prevalences of all of these cag PAI-dependent host cell responses (ranging from 56 to 80%) among the various groups of patients. This study revealed CagA proteins with unique features, CagA subspecies of various sizes, and new functional properties for the phenotypic outcomes. We further showed that induction of AGS cell motility and elongation are two independent processes. Our data corroborate epidemiological studies, which indicate a significant association of cag PAI presence and functionality with histopathological findings in gastritis, peptic ulcer, and gastric cancer patients, thus emphasizing the importance of the cag PAI for the pathogenicity of H. pylori . Nevertheless, we found no significant association of the specific H. pylori -induced responses with any particular patient group. This may indicate that the determination of disease development is highly complex and involves multiple bacterial and/or host factors.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2004
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 2004
    In:  Infection and Immunity Vol. 72, No. 6 ( 2004-06), p. 3646-3649
    In: Infection and Immunity, American Society for Microbiology, Vol. 72, No. 6 ( 2004-06), p. 3646-3649
    Abstract: Helicobacter pylori induces motogenic and cytoskeletal responses in gastric epithelial cells. We demonstrate that these responses can be induced via independent signaling pathways that often occur in parallel. The cag pathogenicity island appears to be nonessential for induction of motility, whereas the elongation phenotype depends on translocation and phosphorylation of CagA.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2004
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society for Microbiology ; 2002
    In:  Infection and Immunity Vol. 70, No. 4 ( 2002-04), p. 2108-2120
    In: Infection and Immunity, American Society for Microbiology, Vol. 70, No. 4 ( 2002-04), p. 2108-2120
    Abstract: Although Helicobacter pylori has generally been considered an extracellular pathogen, a number of in vitro infection experiments and biopsy examinations have shown that it is capable of occasionally entering mammalian host cells. Here, we characterized this entry process by using AGS cells as a host cell model. In gentamicin protection-invasion assays, the number of H. pylori colonies recovered was lower than that for Salmonella enterica serovar Typhimurium X22, Escherichia coli expressing InvA, and Yersinia enterocolitica YO:9 grown at 25°C but higher than that for Neisseria gonorrhoeae VP1 and Y. enterocolitica YO:9 grown at 37°C. At the ultrastructural level, the entry process was observed to occur via a zipper-like mechanism. Internalized H. pylori was bound in tight LAMP-1-containing vacuoles in close association with condensed filamentous actin and tyrosine phosphorylation signals. Wortmannin, a potent inhibitor of phosphatidylinositol 3-kinase, and calphostin C, an inhibitor of protein kinase C, both inhibited the entry of H. pylori in a sensitive and dose-dependent manner; however, the level of entry was enhanced by sodium vanadate, an inhibitor of tyrosine phosphatases and ATPases. Furthermore, the cytokine tumor necrosis factor alpha antagonized the entry of H. pylori into AGS cells. Collectively, these results demonstrate that the entry of H. pylori into AGS cells occurs via a zipper-like mechanism which involves various host signal transduction events.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2002
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Infection and Immunity, American Society for Microbiology, Vol. 70, No. 8 ( 2002-08), p. 4687-4691
    Abstract: Infection with cag + but not cag -negative Helicobacter pylori leads to the formation of large homotypic aggregates of macrophage-like cells. Intracellular adhesion molecule 1 is up-regulated and recruited to the cell surface of infected cells and mediates the aggregation via lymphocyte function-associated molecule 1. This signaling may regulate cell-cell interactions and inflammatory responses.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2002
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society for Microbiology ; 2002
    In:  Infection and Immunity Vol. 70, No. 2 ( 2002-02), p. 665-671
    In: Infection and Immunity, American Society for Microbiology, Vol. 70, No. 2 ( 2002-02), p. 665-671
    Abstract: The type IV secretion machinery encoded by the cag pathogenicity island (PAI) of Helicobacter pylori has been implicated in a series of host responses during infection. Here, we analyzed the function of 12 cag PAI genes from both cag I and cag II loci, including the complete virB/D complex ( virB4, virB7, virB8, virB9, virB10, virB11 , and virD4 ). We monitored interleukin-8 (IL-8) secretion, CagA translocation and tyrosine phosphorylation, and induction of a scattering (“hummingbird”) phenotype upon H. pylori infection of AGS gastric epithelial cells. For the first time, we have complemented individual cag PAI gene knockout mutants with their intact genes expressed from a shuttle vector and showed that complemented CagA and VirD4 restored wild-type function. Our results demonstrate that phenotypic changes and phosphorylation of CagA depended on all virB/D genes and several other genes of the cag PAI. Induction of IL-8 secretion depended largely on the same set of genes but was independent of CagA and VirD4. Thus, CagA translocation and induction of IL-8 secretion are regulated by VirD4-CagA-dependent and VirD4-CagA-independent mechanisms, respectively. The function of VirD4 as a possible adapter protein which guides CagA into the type IV secretion channel is presented in a model.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2002
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...