GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 17 ( 2023-09-01), p. 13567-
    Abstract: Dystrophinopathies are the most common muscle diseases, especially in men. In women, on the other hand, a manifestation of Duchenne muscular dystrophy is rare due to X-chromosomal inheritance. We present two young girls with severe muscle weakness, muscular dystrophies, and creatine kinase (CK) levels exceeding 10,000 U/L. In the skeletal muscle tissues, dystrophin staining reaction showed mosaicism. The almost entirely skewed X-inactivation in both cases supported the possibility of a dystrophinopathy. Despite standard molecular diagnostics (including multiplex ligation-dependent probe amplification (MLPA) and next generation sequencing (NGS) gene panel sequencing), the genetic cause of the girls’ conditions remained unknown. However, whole-genome sequencing revealed two reciprocal translocations between their X chromosomes and chromosome 5 and chromosome 19, respectively. In both cases, the breakpoints on the X chromosomes were located directly within the DMD gene (in introns 54 and 7, respectively) and were responsible for the patients’ phenotypes. Additional techniques such as Sanger sequencing, conventional karyotyping and fluorescence in situ hybridization (FISH) confirmed the disruption of DMD gene in both patients through translocations. These findings underscore the importance of accurate clinical data combined with histopathological analysis in pinpointing the suspected underlying genetic disorder. Moreover, our study illustrates the viability of whole-genome sequencing as a time-saving and highly effective method for identifying genetic factors responsible for complex genetic constellations in Duchenne muscular dystrophy (DMD).
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Genes, MDPI AG, Vol. 13, No. 10 ( 2022-09-28), p. 1752-
    Abstract: New techniques in molecular genetic diagnostics now allow for accurate diagnosis in a large proportion of patients with muscular diseases. Nevertheless, many patients remain unsolved, although the clinical history and/or the muscle biopsy give a clear indication of the involved genes. In many cases, there is a strong suspicion that the cause must lie in unexplored gene areas, such as deep-intronic or other non-coding regions. In order to find these changes, next-generation sequencing (NGS) methods are constantly evolving, making it possible to sequence entire genomes to reveal these previously uninvestigated regions. Here, we present a young woman who was strongly suspected of having a so far genetically unsolved sarcoglycanopathy based on her clinical history and muscle biopsy. Using short read whole genome sequencing (WGS), a homozygous inversion on chromosome 13 involving SGCG and LINC00621 was detected. The breakpoint in intron 2 of SGCG led to the absence of γ-sarcoglycan, resulting in the manifestation of autosomal recessive limb-girdle muscular dystrophy 5 (LGMDR5) in the young woman.
    Type of Medium: Online Resource
    ISSN: 2073-4425
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527218-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...