GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Portland Press Ltd. ; 1989
    In:  Biochemical Journal Vol. 259, No. 3 ( 1989-05-01), p. 731-735
    In: Biochemical Journal, Portland Press Ltd., Vol. 259, No. 3 ( 1989-05-01), p. 731-735
    Abstract: Presentation of a protein antigen to T cells is believed to follow its intracellular breakdown by the antigen-presenting cell, with the fragments constituting the trigger of immune recognition. It should then be expected that T-cell recognition of protein antigens in vitro will be independent of protein conformation. Three T-cell lines were made by passage in vitro with native lysozyme of T cells from two mouse strains (B10.BR and DBA/1) that had been primed with the same protein. These cell lines responded well to native lysozyme and very poorly to unfolded (S-sulphopropyl) lysozyme. The response of the T-cell lines to the antigen was major histocompatibility complex (MHC)-restricted. A line from B10.BR was selected for further studies. This line responded to the three surface-simulation synthetic sites of lysozyme (representing the discontinuous antigenic, i.e. antibody binding, sites) and analogues that were extended to a uniform size by a nonsense sequence. T-cell clones prepared from this line were specific to native lysozyme and did not respond to the unfolded derivative. Furthermore, several of these clones showed specificity to a given surface-simulation synthetic site. The exquisite dependency of the recognition by the clones on the conformation of the protein antigen and their ability to recognize the surface-simulation synthetic sites indicate that the native (unprocessed) protein was the trigger of MHC-restricted T-cell recognition.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 1989
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Portland Press Ltd. ; 1991
    In:  Biochemical Journal Vol. 274, No. 3 ( 1991-03-15), p. 849-854
    In: Biochemical Journal, Portland Press Ltd., Vol. 274, No. 3 ( 1991-03-15), p. 849-854
    Abstract: The continuous regions for short-neurotoxin binding on the alpha-chains of Torpedo californica (electric ray) and human acetylcholine receptors (AChR) were localized by reaction of 125I-labelled cobrotoxin (Cot) and erabutoxin b (Eb) with synthetic overlapping peptides spanning the entire extracellular part of the respective alpha-chains. On Torpedo AChR, five Cot-binding regions were found to reside within peptides alpha 1-16, alpha 23-38/alpha 34-49 overlap, alpha 100-115, alpha 122-138 and alpha 194-210. The Eb-binding regions were localized within peptides alpha 23-38/alpha 34-49/alpha 45-60 overlap, alpha 100-115 and alpha 122-138. The main binding activity for both toxins resided within region alpha 122-138. In previous studies we had shown that the binding of long alpha-neurotoxins [alpha-bungarotoxin (Bgt) and cobratoxin (Cbt)] involved the same regions on Torpedo AChR as well as an additional region within residues alpha 182-198. Thus region alpha 182-198, which is the strongest binding region for long neurotoxins on Torpedo AChR, was not a binding region for short neurotoxins. On human AChR, peptide alpha 122-138 possessed the highest activity with both toxins, and lower activity was found in the overlap alpha 23-38/alpha 34-49/alpha 45-60 and in peptide alpha 194-210. In addition, peptides alpha 100-115 and alpha 56-71 showed strong and medium binding activities to Eb, but low activity to Cot, whereas peptide alpha 1-16 exhibited low binding to Cot and no binding to Eb. Comparison with previous studies indicated that, for human AChR, the binding regions of short and long neurotoxins were essentially the same. The finding that the region within residues alpha 122-138 of both human and Torpedo AChR possessed the highest binding activity with short neurotoxins indicated that this region constitutes a universal binding site for long and short neurotoxins on AChR from various species.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 1991
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1983
    In:  Proceedings of the National Academy of Sciences Vol. 80, No. 3 ( 1983-02), p. 840-844
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 80, No. 3 ( 1983-02), p. 840-844
    Abstract: This paper reports the antigenicity of the fusion region of the influenza virus hemagglutinin (HA). Two peptides, comprising the fusion region (residues 1-11 of the HA2 part of HA) of strain A and strain B influenza virus, were synthesized and their abilities to bind rabbit, goat, and human anti-influenza antibodies were determined. In addition, 30 anti-HA monoclonal antibodies were examined for their ability to bind the synthetic peptides. In quantitative immunoadsorbent titrations, the two peptides bound considerable amounts of antibodies in rabbit and goat antisera against virus or HA of the A or B strain as well as in several human sera from patients recovering from influenza A. Of the 30 anti-HA monoclonal antibodies, 5 bound completely and 4 bound partially to the peptides. Antibodies were raised in rabbits against the peptides by immunizing with peptide-bovine serum albumin conjugates or with the free peptides. Anti-peptide antibodies were bound by HA and by the intact virus of the respective strain. However, these antisera failed to exhibit significant virus neutralizing activity. In contrast, the monoclonal antibodies that reacted with these peptides inhibited viral infectivity. The results clearly show that residues 1-11 of HA2 represent an important antigenic site on influenza virus.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1983
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1989
    In:  Proceedings of the National Academy of Sciences Vol. 86, No. 17 ( 1989-09), p. 6729-6733
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 86, No. 17 ( 1989-09), p. 6729-6733
    Abstract: Processing of a protein antigen into fragments is believed to be a prerequisite for its presentation by the antigen-presenting cell to the T cell. This model would predict that, in oligomeric proteins, T cells prepared with specificity for regions that are buried within subunit association surfaces should recognize the respective regions in vitro equally well on the isolated subunit or on the oligomer. Three hemoglobin (Hb) alpha-chain synthetic peptides, corresponding to areas that are situated either completely [alpha-(31-45)] or partially [alpha-(41-45) and alpha-(81-95)] within the interface between the alpha and beta subunits of Hb, and a fourth peptide representing a completely exposed area in tetrameric Hb were used as immunogens in SJL/J (H-2s) mice. Peptide-primed T cells were passaged in vitro with the respective peptide to obtain peptide-specific T-lymphocyte lines. T-cell clones were isolated from these lines by limiting dilution. T-cell lines and clones that were specific for buried regions in the subunit association surfaces recognized the free peptide and the isolated subunit but not the Hb tetramer. On the other hand, T cells with specificity against regions that are not involved in subunit interaction and are completely exposed in the tetramer recognized the peptide, the isolated subunit, and the oligomeric protein equally well. The responses of the T-cell lines and clones were major histocompatibility complex-restricted. Since the same x-irradiated antigen-presenting cells were employed, the results could not be attributed to differences or defects in Hb processing. The findings indicate that in vitro the native (unprocessed and undissociated) oligomeric protein was the trigger of major histocompatibility complex-restricted T-cell responses.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1989
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1985
    In:  Proceedings of the National Academy of Sciences Vol. 82, No. 24 ( 1985-12), p. 8805-8809
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 82, No. 24 ( 1985-12), p. 8805-8809
    Abstract: A major antigenic region of native nicotinic acetylcholine receptors (AcChoR) has been identified by using a synthetic disulfide-looped peptide corresponding to alpha-subunit residues 125-147 of Torpedo electric organ AcChoR: Lys-Ser-Tyr-Cys-Glu-Ile-Ile-Val-Thr-His-Phe- Pro-Phe-Asp-Gln-Gln-Asn-Cys-Thr-Met-Lys-Leu-Gly. The peptide bound 26-56% of polyclonal antibodies induced in rat, rabbit, and dog by immunization with native AcChoR. Rats inoculated with 50 micrograms of unconjugated peptide developed helper T-cell responses, delayed hypersensitivity, and antibodies to native AcChoR. Anti-peptide antibodies were more reactive with native than denatured AcChoR and bound to the alpha subunit. Some reacted exclusively with mammalian muscle AcChoR, some induced modulation of AcChoR on cultured myotubes, but none inhibited binding of alpha-bungarotoxin to solubilized or membrane-associated AcChoR. Repeated immunization induced experimental autoimmune myasthenia gravis: clinical signs in one rat and electrophysiologic and/or biochemical signs in 10 of 11 rats. Thus, at least part of the corresponding region of the mammalian AcChoR alpha subunit is extracellular at the neuromuscular junction and a potential target for pathogenic autoantibodies in patients with acquired myasthenia gravis.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1985
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Biochemical Journal, Portland Press Ltd., Vol. 240, No. 1 ( 1986-11-15), p. 139-146
    Abstract: In previous studies, six T sites within myoglobin (Mb) were localized. To define precisely the boundaries of the T sites, a new approach is introduced and applied here to the T site residing within residues 107-120 of Mb. Two sets of peptides were synthesized. One set represents a stepwise elongation by one-residue increments of the Mb sequence. The other set represents an identical stepwise addition of one-residue increments of the Mb sequence, but which were extended by additional unrelated (nonsense) residues to a uniform size of 14 residues. The longer peptides (nonsense-extended) usually gave higher proliferative responses than did their shorter counterparts having the same Mb region. Thus a minimum peptide size is required for optimal T-cell stimulation. The T site subtends, in three high-responder mouse strains, residues 109-119 or 110-120, depending on strain, and, in three low-responder strains, maps to residues 108-120. Thus, in this case, the T site coincides with the site of B-cell recognition and resides in a small discrete surface region of the protein chain.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 1986
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Rockefeller University Press ; 1981
    In:  The Journal of experimental medicine Vol. 154, No. 5 ( 1981-11-01), p. 1342-1356
    In: The Journal of experimental medicine, Rockefeller University Press, Vol. 154, No. 5 ( 1981-11-01), p. 1342-1356
    Abstract: We have been able to isolate clones of sperm whale muscle myoglobin (Mb)-reactive T cells from (C57BL/6 x A/J)F1 [(B6A)F1] mice. Four types of clones were isolated, distinguished by their patterns of recognition of Mb cyanogen bromide (CNBr) fragments and antigen presenting cell (APC) requirements. Individual T cell clones proliferated in response to one of three CNBr fragments of Mb. Dose-response curves of all clones were identical for native Mb and the appropriate fragment. T cell clones reactive to fragment 1-55 did not proliferate in response to peptide 15-22 (a peptide that binds to serum antibody directed against 1-55). These data support previous findings suggesting differences between antigen recognition by T and B cells, i.e., T cells may not recognize antigen in its native conformation and/or T and B cells may recognize distinct epitopes on the same antigen. Using T cell clones to analyze genetic control of responsiveness to Mb, we found that certain (B6A)F1 T cells recognize Mb presented by low responder strain APC. Thus, genetically determined low responsiveness in this case is probably not due to failure of APC function. We also found that responsiveness to certain Mb epitopes mapped to the I-A subregion whereas others mapped, via gene complementation, to the I-A and I-E subregions. We found no examples of responsiveness mapping to the I-C subregion and suggest an alternative explanation for previous reports mapping genetic control of responsiveness to certain Mb determinants to I-C.
    Type of Medium: Online Resource
    ISSN: 0022-1007 , 1540-9538
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 1981
    detail.hit.zdb_id: 1477240-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Portland Press Ltd. ; 1987
    In:  Biochemical Journal Vol. 246, No. 2 ( 1987-09-01), p. 307-312
    In: Biochemical Journal, Portland Press Ltd., Vol. 246, No. 2 ( 1987-09-01), p. 307-312
    Abstract: Six regions (T sites) of myoglobin (Mb) were found by a comprehensive synthetic strategy to stimulate Mb-primed lymph-node cells. To define precisely the N-terminal boundary of the immunodominant T site (residues 107-120) with site-specific T-cell clones and to determine the effects of peptide size on their stimulation, two sets of peptides were employed. In one set, the peptides were elongated to the left from His-113 by one-residue increments of the Mb sequence. The other set represented an identical stepwise elongation by one-residue increments of the Mb sequence, but which were extended by additional unrelated (‘nonsense’) residues to a uniform size of 14 residues. Examination of the proliferative responses of eight T-cell clones, derived from Mb-primed DBA/2 (H-2d) or SJL (H-2s) mice, revealed a dramatic non-specific size requirement. In every clone, the longer nonsense-extended peptides achieved maximum stimulating activity at a lower optimum peptide dose than its natural-sequence, but shorter, analogue. In addition, slight (one-residue) differences in the N-terminal boundaries among the clones was observed. Thus, the fine specificity of each clone was mapped to the region from residue 111 or 112 to about residue 120 of Mb, which coincides with the site of B-cell recognition and resides in a small discrete surface region of the protein chain.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 1987
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...