GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Global Ecology and Biogeography, Wiley, Vol. 25, No. 1 ( 2016-01), p. 36-45
    Abstract: Climate and human impacts are changing the nitrogen ( N ) inputs and losses in terrestrial ecosystems. However, it is largely unknown how these two major drivers of global change will simultaneously influence the N cycle in drylands, the largest terrestrial biome on the planet. We conducted a global observational study to evaluate how aridity and human impacts, together with biotic and abiotic factors, affect key soil variables of the N cycle. Location Two hundred and twenty‐four dryland sites from all continents except A ntarctica widely differing in their environmental conditions and human influence. Methods Using a standardized field survey, we measured aridity, human impacts (i.e. proxies of land uses and air pollution), key biophysical variables (i.e. soil pH and texture and total plant cover) and six important variables related to N cycling in soils: total N , organic N , ammonium, nitrate, dissolved organic:inorganic N and N mineralization rates. We used structural equation modelling to assess the direct and indirect effects of aridity, human impacts and key biophysical variables on the N cycle. Results Human impacts increased the concentration of total N , while aridity reduced it. The effects of aridity and human impacts on the N cycle were spatially disconnected, which may favour scarcity of N in the most arid areas and promote its accumulation in the least arid areas. Main conclusions We found that increasing aridity and anthropogenic pressure are spatially disconnected in drylands. This implies that while places with low aridity and high human impact accumulate N , most arid sites with the lowest human impacts lose N . Our analyses also provide evidence that both increasing aridity and human impacts may enhance the relative dominance of inorganic N in dryland soils, having a negative impact on key functions and services provided by these ecosystems.
    Type of Medium: Online Resource
    ISSN: 1466-822X , 1466-8238
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 1479787-2
    detail.hit.zdb_id: 2021283-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Biogeography, Wiley, Vol. 41, No. 12 ( 2014-12), p. 2307-2319
    Abstract: Geographical, climatic and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. The aim of this study was to: (1) characterize patterns of beta diversity in global drylands; (2) detect common environmental drivers of beta diversity; and (3) test for thresholds in environmental conditions driving potential shifts in plant species composition. Location Global. Methods Beta diversity was quantified in 224 dryland plant communities from 22 geographical regions on all continents except Antarctica using four complementary measures: the percentage of singletons (species occurring at only one site); Whittaker's beta diversity, β(W); a directional beta diversity metric based on the correlation in species occurrences among spatially contiguous sites, β( R 2 ); and a multivariate abundance‐based metric, β( MV ). We used linear modelling to quantify the relationships between these metrics of beta diversity and geographical, climatic and soil variables. Results Soil fertility and variability in temperature and rainfall, and to a lesser extent latitude, were the most important environmental predictors of beta diversity. Metrics related to species identity [percentage of singletons and β(W)] were most sensitive to soil fertility, whereas those metrics related to environmental gradients and abundance [(β( R 2 ) and β( MV )] were more associated with climate variability. Interactions among soil variables, climatic factors and plant cover were not important determinants of beta diversity. Sites receiving less than 178 mm of annual rainfall differed sharply in species composition from more mesic sites ( 〉 200 mm). Main conclusions Soil fertility and variability in temperature and rainfall are the most important environmental predictors of variation in plant beta diversity in global drylands. Our results suggest that those sites annually receiving c . 178 mm of rainfall will be especially sensitive to future climate changes. These findings may help to define appropriate conservation strategies for mitigating effects of climate change on dryland vegetation.
    Type of Medium: Online Resource
    ISSN: 0305-0270 , 1365-2699
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 2020428-0
    detail.hit.zdb_id: 188963-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Ecology, Wiley, Vol. 106, No. 1 ( 2018-01), p. 242-253
    Abstract: Dryland vegetation is characterized by discrete plant patches that accumulate and capture soil resources under their canopies. These “fertile islands” are major drivers of dryland ecosystem structure and functioning, yet we lack an integrated understanding of the factors controlling their magnitude and variability at the global scale. We conducted a standardized field survey across 236 drylands from five continents. At each site, we measured the composition, diversity and cover of perennial plants. Fertile island effects were estimated at each site by comparing composite soil samples obtained under the canopy of the dominant plants and in open areas devoid of perennial vegetation. For each sample, we measured 15 soil variables (functions) associated with carbon, nitrogen and phosphorus cycling and used the relative interaction index to quantify the magnitude of the fertile island effect for each function. In 80 sites, we also measured fungal and bacterial abundance (quantitative PCR) and diversity (Illumina MiSeq). The most fertile islands, i.e. those where a higher number of functions were simultaneously enhanced, were found at lower elevation sites with greater soil pH values and sand content under semiarid climates, particularly at locations where the presence of tall woody species with a low‐specific leaf area increased fungal abundance beneath plant canopies, the main direct biotic controller of the fertile island effect in the drylands studied. Positive effects of fungal abundance were particularly associated with greater nutrient contents and microbial activity (soil extracellular enzymes) under plant canopies. Synthesis . Our results show that the formation of fertile islands in global drylands largely depends on: (1) local climatic, topographic and edaphic characteristics, (2) the structure and traits of local plant communities and (3) soil microbial communities. Our study also has broad implications for the management and restoration of dryland ecosystems worldwide, where woody plants are commonly used as nurse plants to enhance the establishment and survival of beneficiary species. Finally, our results suggest that forecasted increases in aridity may enhance the formation of fertile islands in drylands worldwide.
    Type of Medium: Online Resource
    ISSN: 0022-0477 , 1365-2745
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 3023-5
    detail.hit.zdb_id: 2004136-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...