GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Motor Control, Human Kinetics, Vol. 27, No. 4 ( 2023-10-1), p. 844-859
    Abstract: This cross-sectional study examined the immediate effects of four types of real-time feedback during overground gait performed using inertial measurement units on gait kinematics in healthy young participants. Twelve healthy young participants (mean age: 27.1 years) performed 60-s gait trials with each of the following real-time feedback: walking spontaneously (no feedback trial); increasing the ankle plantar-flexion angle during the late stance (ankle trial); increasing the leg extension angle, defined the location of the ankle joint relative to the hip joint in the sagittal plane, during late stance (leg trial); and increasing the knee flexion angle during the swing phase (knee trial). Tilt angles and accelerations of the pelvis and lower limb segments were measured using seven inertial measurement units pre- and postfeedback trials. The differences in gait parameters pre- and postfeedback according to the types of feedback were compared using one-factor repeated-measures analysis of variance, Friedman test, and post hoc test. Real-time feedback in the ankle trial increased gait speed, step length, and ankle plantar-flexion angle compared to the no feedback trial ( p  ≤ .001). Meanwhile, real-time feedback in the leg trial increased step length and hip extension angle compared to the no feedback trial ( p  ≤ .001) and showed a tendency to increase gait speed and leg extension angle. Real-time feedback using inertial measurement units increased gait speed immediately with specific changes in gait kinematics in healthy participants. This study might imply the possibility of clinical application for overground gait training, and further studies are needed to clarify the effectiveness for older people.
    Type of Medium: Online Resource
    ISSN: 1087-1640 , 1543-2696
    Language: Unknown
    Publisher: Human Kinetics
    Publication Date: 2023
    SSG: 31
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Healthcare, MDPI AG, Vol. 9, No. 11 ( 2021-11-18), p. 1571-
    Abstract: The aim of this cross-sectional study was to examine the correlations between gait regularity, cognitive functions including cognitive domains, and the mild cognitive impairment (MCI) in community-dwelling older people. This study included 463 older adults (63.4% women, mean age: 74.1), and their step and stride regularity along the three-axis components was estimated from trunk acceleration, which was measured by inertial measurement units during a comfortable gait. Four aspects of cognitive function were assessed using a tablet computer: attention, executive function, processing speed, and memory, and participants were classified into those with or without MCI. The vertical component of stride and step regularity was associated with attention and executive function (r = −0.176–−0.109, p ≤ 0.019), and processing speed (r = 0.152, p 〈 0.001), after it was adjusted for age and gait speed. The low vertical component of step regularity was related to the MCI after it was adjusted for covariates (OR 0.019; p = 0.016). The results revealed that cognitive function could affect gait regularity, and the vertical component of gait regularity, as measured by a wearable sensor, could play an important role in investigating cognitive decline in older people.
    Type of Medium: Online Resource
    ISSN: 2227-9032
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2721009-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: PLOS ONE, Public Library of Science (PLoS), Vol. 16, No. 8 ( 2021-8-12), p. e0255035-
    Abstract: The importance of an interaction between trunk stability muscles and hip muscle function has been suggested. However, reported exercises rarely act on the trunk and hip muscles simultaneously. Here, we devised an abdominal oblique and hip muscle exercise, the Self-oblique exercise (SOE). We examined whether SOE activated abdominal and hip muscles in the supine and half-kneeling positions, compared with abdominal crunch (AC) and plank exercises; and whether participants could modulate the exercise load. Participants were 20 healthy males with some sports experience such as football and baseball on average 10.5 ± 4.0 years. Participants applied self-pressure to their right thighs using the contralateral upper limb with 40% or 70% of the maximum force in Supine SOE and Half- kneeling SOE. The following abdominal and hip muscles were measured using surface electromyography: bilateral external obliques (EO), bilateral internal obliques (IO), right rectus abdominis, right gluteus medius (GMed), and right adductor longus (ADD). All evaluated muscle groups showed significant differences between exercises (p 〈 0.001). Supine SOE-70% showed 80.4% maximal voluntary contraction (MVC) for left EO (p 〈 0.017), 61.4% MVC for right IO (p 〈 0.027), 24.3% MVC for GMed (p 〈 0.002), and 42.4% MVC for ADD (p 〈 0.004); these were significantly greatest among all exercises. Muscle activity during Supine SOE-70% was greater than that during Supine SOE-40%. Similarly, Half-kneeling SOE-40% promoted abdominal and hip muscle exertion, and showed more significant activity in GMed (p 〈 0.006) and ADD (p 〈 0.001) than AC and plank. SOE could activate abdominal and hip muscles depends on the pressure applied by upper limb. Also, SOE allows participants to modulate the exercise load in a self-controlled step by step manner. Modulation of the exercise load is difficult in AC or plank compared to SOE, and AC or plank cannot obtain simultaneous oblique and hip muscle activity. SOE could be practiced anywhere, in various positions, without any tools.
    Type of Medium: Online Resource
    ISSN: 1932-6203
    Language: English
    Publisher: Public Library of Science (PLoS)
    Publication Date: 2021
    detail.hit.zdb_id: 2267670-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 18, No. 22 ( 2021-11-13), p. 11925-
    Abstract: This study aimed to clarify the relationship between leg extension angle and knee flexion angle during gait in older adults. The subjects of this cross-sectional study were 588 community-dwelling older adults (74.6 ± 6.1 y). Segment angles and acceleration were measured using five inertial measurement units during comfortable gait, and bilateral knee and hip joint angles, and leg extension angle, reflecting whole lower limb extension at late stance, were calculated. Propulsion force was estimated using the increase in velocity calculated from anterior acceleration of the sacrum during late stance. Correlation analysis showed that leg extension angle was associated with knee flexion angle at swing phase and hip extension angle and increase in velocity at late stance (r = 0.444–508, p 〈 0.001). Multiple regression analysis showed that knee flexion angle at mid-swing was more affected by leg extension angle (β = 0.296, p 〈 0.001) than by gait speed (β = 0.219, p 〈 0.001) and maximum hip extension angle (β = −0.150, p 〈 0.001). These findings indicate that leg extension angle may be a meaningful parameter for improving gait function in older adults due to the association with knee kinematics during swing as well as propulsion force at late stance.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Medicina, MDPI AG, Vol. 57, No. 11 ( 2021-11-09), p. 1222-
    Abstract: Background and Objectives: Leg extension angle is important for increasing the propulsion force during gait and is a meaningful indicator for evaluating gait quality in stroke patients. Although leg extension angle during late stance might potentially also affect lower limb kinematics during the swing phase, the relationship between these two remains unclear. This study aimed to investigate the relationship between leg extension angle and knee flexion angle during pre-swing and swing phase in post-stroke gait. Materials and Methods: Twenty-nine stroke patients walked along a 16 m walkway at a self-selected speed. Tilt angles and acceleration of pelvis and paretic lower limb segments were measured using inertial measurement units. Leg extension angle, consisting of a line connecting the hip joint with the ankle joint, hip and knee angles, and increments of velocity during pre-swing and swing phase were calculated. Correlation analysis was conducted to examine the relationships between these parameters. Partial correlation analysis adjusted by the Fugl-Meyer assessment-lower limb (FMA-LL) was also performed. Results: On the paretic side, leg extension angle was positively correlated with knee flexion angle during the swing phase (r = 0.721, p 〈 0.001) and knee flexion angle and increments of velocity during the pre-swing phase (r = 0.740–0.846, p 〈 0.001). Partial correlation analysis adjusted by the FMA-LL showed significant correlation between leg extension angle and knee flexion angle during the swing phase (r = 0.602, p = 0.001) and knee flexion angle and increments of velocity during the pre-swing phase (r = 0.655–0.886, p 〈 0.001). Conclusions: Leg extension angle affected kinematics during the swing phase in post-stroke gait regardless of the severity of paralysis, and was similar during the pre-swing phase. These results would guide the development of effective gait training programs that enable a safe and efficient gait for stroke patients.
    Type of Medium: Online Resource
    ISSN: 1648-9144
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2088820-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Healthcare Engineering, Hindawi Limited, Vol. 2022 ( 2022-5-29), p. 1-7
    Abstract: Bridging exercise is commonly used to increase the strength of the hip extensor and trunk muscles in physical therapy practice. However, the effect of lower limb positioning on the joint and muscle forces during the bridging exercise has not been analyzed. The purpose of this study was to use a musculoskeletal model simulation to examine joint and muscle forces during bridging at three different knee joint angle positions. Fifteen healthy young males (average age: 23.5 ± 2.2 years) participated in this study. Muscle and joint forces of the lumbar spine and hip joint during the bridging exercise were estimated at knee flexion angles of 60°, 90°, and 120° utilizing motion capture data. The lumbar joint force and erector spinae muscle force decreased significantly as the angle of the knee joint increased. The resultant joint forces were 200.0 ± 23.2% of body weight (%BW), 174.6 ± 18.6% BW, and 150.5 ± 15.8% BW at 60°, 90°, and 120° knee flexion angles, respectively. On the other hand, the hip joint force, muscle force of the gluteus maxims, and adductor magnus tended to increase as the angle of the knee joint increased. The resultant joint forces were 274.4 ± 63.7% BW, 303.9 ± 85.8% BW, and 341.1 ± 85.7% BW at a knee flexion angle of 60°, 90°, and 120°, respectively. The muscle force of the biceps femoris decreased significantly with increased knee flexion during the bridging exercise. In conclusion, the knee flexion position during bridging exercise has different effects on the joint and muscle forces around the hip joint and lumbar spine. These findings would help clinicians prescribe an effective bridging exercise that includes optimal lower limb positioning for patients who require training of back and hip extensor muscles.
    Type of Medium: Online Resource
    ISSN: 2040-2309 , 2040-2295
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2545054-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Sports, MDPI AG, Vol. 11, No. 8 ( 2023-08-02), p. 147-
    Abstract: Roller massage has been recognized as an effective intervention for managing various conditions. However, data on the effects of roller massage on the dynamic mechanisms of the myofascial and soft tissues of the lower back are limited. This study aimed to examine the effect of the self-myofascial release of the lower back on myofascial gliding, lumbar flexibility, and abdominal trunk muscle strength using a roller massager. This crossover study included 24 college athletes who underwent three interventions—roller massage, static stretching, and control (rest). Before and after the intervention, lumbar and fascial gliding were evaluated using ultrasonography. Long-seat anteflexion (lumbar flexibility) and abdominal trunk muscle strength were assessed. The movement velocities of the subcutaneous tissue and the multifidus muscle over time were calculated using echo video analysis software, and gliding was estimated using the cross-correlation coefficient between the velocities. Gliding, lumbar flexibility, and abdominal trunk muscle strength showed significant intervention-by-time interactions. Roller massage significantly improved gliding, lumbar flexibility, and abdominal trunk muscle strength. The self-myofascial release of the lower back using a roller massager improved the lumbar/fascia gliding, lumbar flexibility, and abdominal trunk muscle strength compared to static stretching.
    Type of Medium: Online Resource
    ISSN: 2075-4663
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2704239-X
    SSG: 31
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Applied Sciences, MDPI AG, Vol. 12, No. 19 ( 2022-09-21), p. 9466-
    Abstract: In stroke patients, the impact of lower limb physical functions on the leg extension angle remains unclear. We set out to reveal the physical impairments of the affected side in such patients that were associated with leg extension angle during gait. Twenty-six stroke patients walked for 16 m at a spontaneous speed. During walking, the leg extension angle and the increment of velocity during late stance, as an indicator of propulsion, were measured by inertial measurement units. The Berg balance scale (BBS), Fugl-Meyer assessment-lower limb, and motricity index-lower limb (MI-LL) were also evaluated. Stepwise multiple regression analysis was employed to reveal functions associated with the leg extension angle on the affected side. A path analysis was also used to confirm the relationship between the extracted factors, leg extension angle, and gait speed. Multiple regression analysis showed that the BBS was significantly related to the leg extension angle on the affected side (p 〈 0.001). Path analysis revealed that the leg extension angle was also indirectly affected by the MI-LL and that it affected gait speed via propulsion on the affected side. These findings could guide the prescription of effective gait training for improving gait performance during stroke rehabilitation.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Gait & Posture, Elsevier BV, Vol. 103 ( 2023-06), p. 153-158
    Type of Medium: Online Resource
    ISSN: 0966-6362
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 1500471-5
    SSG: 31
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: BioMed Research International, Hindawi Limited, Vol. 2020 ( 2020-11-18), p. 1-6
    Abstract: Many stroke patients rely on cane or ankle-foot orthosis during gait rehabilitation. The purpose of this study was to investigate the immediate effect of functional electrical stimulation (FES) to the gluteus medius (GMed) and tibialis anterior (TA) on gait performance in stroke patients, including those who needed assistive devices. Fourteen stroke patients were enrolled in this study (mean poststroke duration: 194.9 ± 189.6   d ; mean age: 72.8 ± 10.7   y ). Participants walked 14 m at a comfortable velocity with and without FES to the GMed and TA. After an adaptation period, lower-limb motion was measured using magnetic inertial measurement units attached to the pelvis and the lower limb of the affected side. Motion range of angle of the affected thigh and shank segments in the sagittal plane, motion range of the affected hip and knee extension-flexion angle, step time, and stride time were calculated from inertial measurement units during the middle ten walking strides. Gait velocity, cadence, and stride length were also calculated. These gait indicators, both with and without FES, were compared. Gait velocity was significantly faster with FES ( p = 0.035 ). Similarly, stride length and motion range of the shank of the affected side were significantly greater with FES (stride length: p = 0.018 ; motion range of the shank: p = 0.02 6). Meanwhile, cadence showed no significant difference ( p = 0.238 ) in gait with or without FES. Similarly, range of motion of the affected hip joint, knee joint, and thigh did not differ significantly depending on FES condition ( p = 0.115 ‐ 0.529 ). FES to the GMed and TA during gait produced an improvement in gait velocity, stride length, and motion range of the shank. Our results will allow therapists to use FES on stroke patients with varying conditions.
    Type of Medium: Online Resource
    ISSN: 2314-6141 , 2314-6133
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2020
    detail.hit.zdb_id: 2698540-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...