GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (1)
  • Andreeff, Michael  (1)
Material
Publisher
  • American Association for Cancer Research (AACR)  (1)
Language
Years
  • 1
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 19, No. 8 ( 2020-08-01), p. 1636-1648
    Abstract: Focal adhesion kinase (FAK) promotes cancer cell growth and metastasis. We previously reported that FAK inhibition by the selective inhibitor VS-4718 exerted antileukemia activities in acute myeloid leukemia (AML). The mechanisms involved, and whether VS-4718 potentiates efficacy of other therapeutic agents, have not been investigated. Resistance to apoptosis inducted by the BCL-2 inhibitor ABT-199 (venetoclax) in AML is mediated by preexisting and ABT-199–induced overexpression of MCL-1 and BCL-XL. We observed that VS-4718 or silencing FAK with siRNA decreased MCL-1 and BCL-XL levels. Importantly, VS-4718 antagonized ABT-199–induced MCL-1 and BCL-XL. VS-4718 markedly synergized with ABT-199 to induce apoptosis in AML cells, including primary AML CD34+ cells and AML cells overexpressing MCL-1 or BCL-XL. In a patient-derived xenograft (PDX) model derived from a patient sample with NPM1/FLT3-ITD/TET2/DNMT3A/WT1 mutations and complex karyotype, VS-4718 statistically significantly reduced leukemia tissue infiltration and extended survival (72 vs. control 36 days, P = 0.0002), and only its combination with ABT-199 effectively decreased systemic leukemia tissue infiltration and circulating blasts, and prolonged survival (65.5 vs. control 36 days, P = 0.0119). Furthermore, the combination decreased NFκB signaling and induced the expression of IFN genes in vivo. The combination also markedly extended survival of a second PDX model developed from an aggressive, TP53-mutated complex karyotype AML sample. The data suggest that the combined inhibition of FAK and BCL-2 enhances antileukemia activity in AML at least in part by suppressing MCL-1 and BCL-XL and that this combination may be effective in AML with TP53 and other mutations, and thus benefit patients with high-risk AML.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...