GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 115, No. 26 ( 2010-07-01), p. 5385-5392
    Abstract: Elevated cytokines in bone marrow (BM) micro-environment (interleukin-6 [IL-6], transforming growth factor-beta [TGF-β] , and IL-1β) may play an important role in observed immune dysfunction in multiple myeloma (MM). As IL-6 and TGF-β are important for the generation of T-helper 17 (TH17) cells, we evaluated and observed a significantly elevated baseline and induced frequency of Th17 cells in peripheral blood mononuclear cells (PBMCs) and BM mononuclear cells (BMMCs) from MM patients compared with healthy donors. We observed significant increase in levels of serum IL-17, IL-21, IL-22, and IL-23 in blood and BM in MM compared with healthy donors. We also observed that myeloma PBMCs after TH17 polarization significantly induced IL-1α, IL-13, IL-17, and IL-23 production compared with healthy donor PBMCs. We next observed that IL-17 promotes myeloma cell growth and colony formation via IL-17 receptor, adhesion to bone marrow stromal cells (BMSCs) as well as increased growth in vivo in murine xenograft model of human MM. Additionally, we have observed that combination of IL-17 and IL-22 significantly inhibited the production of TH1-mediated cytokines, including interferon-γ (IFN-γ), by healthy donor PBMCs. In conclusion, IL-17–producing Th17 cells play an important role in MM pathobiology and may be an important therapeutic target for anti-MM activity and to improve immune function.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 3113-3113
    Abstract: We have previously demonstrated that Th17 cells, which produce IL-17A, are significantly elevated in peripheral blood and bone marrow (BM) of patients with Multiple Myeloma (MM) and IL-17A promotes MM cell growth and survival, both in vitro and in vivo via IL-17A receptor. We have recently evaluated and observed that anti-IL-17A monoclonal antibody (mAb) significantly inhibited MM cell growth in vitro, while IL-17A induced proliferation of MM cells compared to control. We have also observed significant down-regulation of IL-6 production by anti-IL-17A mAb in MM-BMSC co-culture. Importantly, the administration of anti-IL-17A mAb weekly for 4 weeks in the SCIDhu model of human myeloma, where MM cells grow within the human microenvironment in mice led to a significant inhibition of tumor growth compared to the control mice. This remarkable activity of anti-IL17 mAb raised the question of whether the myeloma cells themselves are a possible source of IL-17. In this study, we used transcriptome sequencing (RNA-Seq) data to evaluate the expression of IL-17A in primary CD138+ myeloma cells (N=17) compared to normal plasma cells (NPC) (N=5). Whereas none of the NPCs expressed IL-17A, it was significantly over-expressed in majority of MM cells. In addition, these data also showed that the expression of other IL-17 family members (IL-7B, C, D, E & F) and Th17-associated pro-inflammatory cytokines (IL-21, IL-22 & IL-23) were not significantly elevated in primary myeloma cells compared to normal donor plasma cells. We further validated these observations by IL-17 immunoblot showing IL17 expression in all MM cell lines and 10 out of 14 primary patient MM cells; confirmed IL-17 expression in MM cells by quantitative RT-PCR, and flow cytometry and by immuno-histochemistry and confocal microscopy. We observed that IL-17 knock down by IL-17-specific siRNA inhibited MM cell growth as well as their ability to induce IL-6 production in co-cultures with BMSC. Finally, expression profile data from 172 uniformly treated patients showed that patients with lower IL-17A expression had superior overall survival compared to those with higher expression. These data confirms that MM cells express IL-17 and targeting it with a mAb will abrogate the autocrine loop making it an attractive therapeutic target. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 456-456
    Abstract: Abstract 456 We have previously demonstrated that IL-17 producing TH17cells, a new subset of T helper cells, are significantly elevated in peripheral blood and bone marrow (BM) from patients with multiple myeloma (MM) and IL-17 produced by these cells promotes MM cell growth and survival, suppresses immune responses and induces osteoclast differentiation both in vitro and in vivo. Based on these observations we have investigated the effects of human anti-IL-17A monoclonal antibody (mAb), AIN-457, in MM. We observed that whereas IL-17A induced proliferation of MM cells (+30.7+2.7%) compared to control; anti-IL-17A mAb AIN-457 significantly inhibited MM cell growth both in presence and absence of BM stromal cells, as measured by thymidine incorporation (−18.7+1.5% and −22.7+2.6% respectively). We have further confirmed these inhibitory effects of anti-IL-17A antibody using MM cell colony forming assay with MethoCult agar plates. While presence of IL-17A increased the colony number from 80 in control plates to 188, presence of AIN-457 reduced the colonies to 〈 40 per unit area (p 〈 0.01). Evaluating the mechanism of action, IL-17A induced IL-6 production (+289.6+38%; p 〈 0.01); while AIN457 significantly down-regulated IL-6 production (−25+7%; p 〈 0.05) in MM-BMSC co-culture. We also observed that AIN-457 significantly reduced adhesion of MM cells to stromal cells (27%, p=0.011). AIN457 significantly inhibited IL-6 production in human fetal bone chips in the presence of MM cells within 24 hours of ex-vivo culture (control − 487+39 pg/ml; IL-17 990+27 pg/ml; p 〈 0.01 and AIN-457 − 326+7 pg/ml; p 〈 0.01). Since IL-17A plays a critical role in bone damage, we further evaluated the effect of this mAb on the generation of osteoclasts. When normal BM cells were cultured for three weeks in osteoclast supporting medium, presence of AIN-457 significantly inhibited TRAP+ multinucleated osteoclast cell numbers by 〉 60%. We next evaluated the efficacy of AIN-457 in vivo in the murine models of human myeloma; in the subcutaneous MM xenograft model, we observed significant reduction in tumor volumes by pre-treatment with AIN457 compared to control (142+77 mm versus 355+56 mm, p=0.019) while IL-17A significantly increased MM cell growth (727+135 mm, p=0.01). More importantly in the SCIDhu model of human myeloma where MM cells grow within the human microenvironment in the mice, administration of AIN-457 weekly for 4 weeks after the first detection of tumor in mice led to a significant inhibition of tumor growth as measured by human sIL-6 receptor compared to control mice (5.9±2.2 ng/ml versus 23.2±6.3 ng/ml; n=7; P 〈 0.01). These pre-clinical in vitro and in vivo observations confirm the role of IL-17A produced by TH17 cells in MM and provide the rationale for clinical evaluation of AIN 457 for both anti-myeloma effects as well as to improve bone disease in myeloma. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 3986-3986
    Abstract: Abstract 3986 B cell-malignancies exhibit considerable immune dysfunction particularly in multiple myeloma (MM). We have previously demonstrated that in T cell-compartment, regulatory T helper cells are dysfunctional in multiple myeloma (MM) while Th17 cells are significantly elevated and IL-17 produced by them is associated with MM cell growth and survival as well as suppressed immune responses and bone disease. We have here investigated the B cell-subsets and their ability to re-program anti-tumor immunity in MM. We have first characterised four different B cell-subsets (B1a, B1b, B2 and regulatory B cells) using 10-color flow cytometric analysis in both peripheral blood and bone-marrow (BM) samples from MM patients compared with normal healthy donors. We observe that CD5+ B1a-B cells are significantly elevated in peripheral blood of MM patients (N=7) compared to healthy donor (N=15) (42±8% vs 13±3%, respectively, p 〈 0.05); while normal B cells (B2 cells) are significantly reduced in peripheral blood (29.8±6.5, p 〈 0.05) and in the BM samples (11±4.8, N=4, p 〈 0.05) of MM patients compared to healthy donors (59±3, and 60.2±2, N=10, respectively). We also observed that both B1b (47.9±18 vs. 22.8±4) and regulatory B cells (7.1±4.5 vs. 1.54±0.3) are elevated in BM samples of MM compared to healthy donors, however there were no differences in B1b and regulatory B cells in the peripheral blood of MM compared to healthy donor samples. Interestingly, in myeloma we observe higher levels of activated B cell subsets but lower levels of memory B cell subsets compared to healthy donors. These results, particularly very low levels of normal B cells in MM patients, may explain the decreased levels of uninvolved immunoglobulin in MM. As removal of B cell population has been shown to re-program T helper cell populations, we next investigated impact of B cell population on T cell activation. We activated normal PBMC via the anti-CD3 antibody, in the presence or absence of B or CD25+ cells and measured intra-cellular IFN-γ levels in CD69+ cells. We found that the absence of B cells significantly inhibited interferon-producing T cells compared to PBMC (by 43%; p 〈 0.05). Importantly, following removal of CD25+ cells, which consists of both Tregs and activated memory T cells, with or without B cells, we did not observe any difference in the inhibition of IFN-γ, indicating that B cells are influencing memory T cells rather than naïve T cells for the production of IFN-γ. This prompted us to identify the phenotypic signature of regulatory T cell populations when purified memory T cells are polarized with the regulatory T cell cocktail in presence or absence of B cells. We observed that B cells reduce FOXP3 expression by 18 %(N=5) and establish cognitive interactions with T cells. This occurred by increasing the expression of GITR (154%) and CTLA4 (54%); while reducing PD1 (−24%) and OX40 (−21%) expression on T cells without affecting HLA expression. We have also observed these improvements by B cell modulation on T cells in MM. Our results indicate that targeting these re-programmable capabilities of B cells to modulate T helper cell populations may enable us to improve T cell function in MM; and may improve immune function in MM and also allow us to enhance responses to vaccinations. Disclosures: Ghobrial: Millennium: Advisory Board Other; Novartis: Advisory Board, Advisory Board Other. Richardson:Novartis: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees. Treon:Onyx: Research Funding; Celgene: Research Funding; Pharmacyclics: Research Funding; Cephalon: Consultancy; Avila: Consultancy. Anderson:Celgene, Millennium, BMS, Onyx: Membership on an entity's Board of Directors or advisory committees; Acetylon, Oncopep: Scientific Founder, Scientific Founder Other.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 106, No. 11 ( 2005-11-16), p. 3930-3930
    Abstract: Bortezomib is the first proteasome inhibitor approved for the therapy of multiple myeloma (MM) based on its in vitro and in vivo activity in myeloma. However, the toxicity and effects of this drug on the human immune function have not been entirely studied. In the present study, we evaluated the effects of Bortezomib on normal human immune cells including dendritic cells (DC), T lymphocytes and NK cells for cell survival, antigen expression, production of cytokines, and other key parameters of immune cell function. In our evaluation of effect of Bortezomib on DC, we did not observe significant change in the expression of cell surface antigens including CD40, CD80, CD83, CD86, HLA-ABC and HLA-DPQR molecules in terms of percentage of cells positive as well as mean fluorescence intensity (MFI). Bortezomib treated immature DC maintained the ability for antigen uptake as measured by uptake of Dextran-FITC (untrt vs. trt = 798 MFI vs. 802 MFI), maintained the expression levels of antigen uptake receptors including mannose (untrt vs. trt = 85% vs. 79%) and DEC-205 (untrt vs. trt = 49% vs. 42%), and the capacity to produce IL-12 (untrt vs. trt = 135 vs. 125 pg/ml). In addition, Bortezomib treated mature DC was able to induce comparable levels of allogenic T cell proliferation to the untreated mature DC as measured by 3[H]-Thymidine incorporation (untrt vs. trt = 212556 cpm vs. 220571 cpm). Furthermore, cell surface antigen expression including CD3, CD4, CD8, CD28, CD154 (CD40L) and TCRab on T lymphocytes were not changed by Bortezomib treatment. The treated T cells also maintained the ability to secrete IFN-g secretion in response to allogenic DC (untrt vs. trt = 85 vs. 88 pg/ml) or Staphylococcal enterotoxin B (untrt vs. trt = 131 vs. 154 pg/ml). The cytolytic activity of the NK cell population was comparable between proteasome inhibitor treated and untreated control cells against the McCAR (untrt vs. trt = 44% vs. 52%) and MM1S (49% vs. 42%) target MM cell lines. This observation was correlated with similar expression levels of CD2, CD11a, CD94, NKp30, NKp44, NKp46, and KARp50.3 activation antigens in treated versus untreated NK cells. These, in vitro results confirm lack of adverse effects of Bortezomib on immune function, and allow us to incorporate of Bortezomib in multimodality therapy that includes immunotherapy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 3065-3065
    Abstract: Gene expression and proteomics studies have advanced our understanding of Waldenstrom’s macroglobulinemia (WM) and identified potential therapeutic targets, however, WM remains incurable. Therefore there is an urgent need for the development of novel chemotherapeutic agents targeting deregulated signaling pathways specifically present in WM. Based on role of transcription factor Sp1 in myeloma, we evaluated its molecular and functional role in WM. Our loss of function and Gain of function studies have highlighted a potential oncogenic role of Sp1 in WM. Reduction in Sp1 protein level following transient transfection of WM cells with Sp1 siRNA led to decreased WM cell viability. Conversely, overexpression of Sp1 promoted cell growth and increased IgM production in BCWM1 cell line, associated with an increased level of Sp1 dependent genes. These results demonstrate the role of Sp1 in WM cell growth and survival and provide rationale to therapeutically target Sp1 in WM using small molecule inhibitors of Sp1. We therefore evaluated the activity of Terameprocol (TMP), a small molecule with ability to inhibit Sp1-mediated transactivation by competing for binding to specific Sp1-domains within gene promoter regions. Treatment with TMP caused inhibition of WM and IgM-secreting low-grade lymphoma cell lines, as well as purified primary patient WM cell growth in a dose and time dependent fashion. Sp1 physically interacts with other TFs, influencing their activity. To identify TFs whose activity is controlled by Sp1 in WM cells, we analyzed the activation of 47 transcription factors in nuclear extracts from BCWM1 and MWCL1 cells that were siRNA-depleted for Sp1 or treated with TMP using a transcription factor profiling assay. Both depletion of Sp1 and TMP treatment decreased the activity of TFs, including STAT1, STAT3, and NF-κB, whereas other factors, such as p53, were not affected. As NF-κB and STAT-3 pathways have been shown to be constitutively activated in WM and to play a pivotal role in regulating growth and survival of WM cells, we have focused our further analysis on these TFs in an attempt to understand the molecular mechanism underlying the activity of Sp1 and its inhibition in WM. Enforced expression of Sp1 significantly induced NF-κB p65 (RelA) activity, and TMP was able to overcome this effect. Inhibition of Sp1 activity impairs basal and TNFα-stimulated NF-κB transcriptional activity as well as IL-6-induced STA3 activation in WM cells. Recent studies have reported the high frequency of the MYD88 L265P somatic mutation in patients with WM. To investigate the impact of MYD88 on the sensitivity of WM cells to Sp1 inhibition, we first analyzed effect of TMP on MYD88-silenced cells. MYD88 knockdown significantly inhibits BCWM1 cell growth compared with scrambled cells and the antitumor effect was more pronounced upon treatment with TMP. These results provided the rationale to investigate the activity of combination treatment between TMP and inhibitors known to impede the MYD88 pathway signaling. BCWM1 and MWCL1 WM cells were cultured in the absence or presence of a direct kinase inhibitor of IRAK 1 and 4 or the BTK inhibitor PCI32765. The combination treatment resulted in significant and synergistic dose-dependent antiproliferative effect and inhibition of NFkB p65 activity in MYD88 L265P–expressing WM cells suggesting that MYD88 and Sp1 pathways are both functional in WM but independent from each other. In summary, these results demonstrate Sp1 as an important transcription factor that regulates proliferation and survival of WM cells as well as IgM secreting low-grade lymphoma cells and provides preclinical rationale for clinical development of TMP in WM alone or in combination with inhibitors of MYD88 pathway. Disclosures: Anderson: oncopep: Equity Ownership; celgene: Consultancy; onyx: Consultancy; gilead: Consultancy; sanofi aventis: Consultancy; acetylon: Equity Ownership. Treon:Millennium: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 122-122
    Abstract: Deregulated expression of microRNAs (miR) is a hallmark of cancer. Tumor suppressor miRNAs are generally down-regulated in cancer cells compared to their normal counterpart, and their enforced expression indeed represents a promising strategy for cancer treatment. We have found miR-23b to be downregulated in CD138+ myeloma cells from 38 multiple myeloma (MM) patients and 18 plasma cell leukemia (PCL) patients compared to normal PCs. Decreased expression of miR-23b was further confirmed in an independent dataset of 66 MM patients by TaqMan miRNA assays. The downregulation of miR-23b expression was also observed in several myeloma cells lines when compared with PBMC and BMSC. Interestingly, interaction of BMSC with MM cells resulted in further decrease in miR-23b expression in both cell types. Moreover, Interleukin-6 (IL-6) also suppressed the expression of miR-23b in a time- and dose- dependent pattern, indicating that the human bone marrow microenvironment (huBMM) modulates miR-23b levels. miR-23b is commonly repressed in autoimmune conditions by IL-17, a cytokine shown to promote myeloma cell growth and inhibit its immune function. We have indeed observed further decrease in miR-23b expression in MM cells after IL-17 treatment for 24 hours. We have also observed downregulation of miR-23b in CD19+ Waldenstrom’s Macroglobulinemia (WM) cells compared to CD19+ B cells from healthy donors, which was further decreased in the presence of components of the WM bone marrow milieu. We further assessed the functional significance of miR-23b by both gain- and loss-of-function studies. A significant decrease in cell proliferation and survival, along with induction of caspase 3/7 activity was observed over time in miR-23b mimic–transfected myeloma (H929, KMS11) and WM cell lines (MWCL1) with low miR-23b expression. At the molecular level, we have identified Sp1, a transcription factor endowed with oncogenic activity in MM and WM, as a target of miR-23b. Expression of miR-23b decreased Sp1 mRNA levels via 3’UTR binding, as assessed in luciferase reporter assays. On the other hand, genetic and/or pharmacological inhibition of Sp1 led to miR-23b upregulation, thus highlighting the occurrence of a feedback loop between miR-23b and its target. Of note, miR-23b transfection significantly reduced Sp1-driven NF-kB activity in MM and WM cells. Finally, c-Myc, an important oncogenic transcription factor known to stimulate MM cell proliferation, has been shown to transcriptionally repress miR-23b. Moreover, treatment with the demethylating agent 5-aza-deoxycitidine significantly increase the expression of miR-23b in MM1S and KMS-11 cells suggesting that promoter methylation may be an additional mechanism of miR-23b suppression in myeloma. Thus MYC-dependent miR-23b repression in myeloma cells may allow activation of oncogenic transcription factors Sp1 and NF-κB, representing the first feed forward loop with critical growth and survival role in myeloma. Taken together, these data support a model in which the humoral environment reduces miR-23b expression in tumor cells, suggesting a tumor suppressor role in MM and WM and highlighting the potential of a miR-23b-based replacement therapy to treat these hematologic malignancies. Disclosures: Anderson: gilead: Consultancy; onyx: Consultancy; celgene: Consultancy; sanofi aventis: Consultancy; oncopep: Equity Ownership; acetylon: Equity Ownership.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2008
    In:  Proceedings of the National Academy of Sciences Vol. 105, No. 4 ( 2008-01-29), p. 1285-1290
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 105, No. 4 ( 2008-01-29), p. 1285-1290
    Abstract: Monoclonal gammopathy of undetermined significance (MGUS) is a common disorder of aging and a precursor lesion to full-blown multiple myeloma (MM). The mechanisms underlying the progression from MGUS to MM are incompletely understood but include the suppression of innate and adaptive antitumor immunity. Here, we demonstrate that NKG2D, an activating receptor on natural killer (NK) cells, CD8 + T lymphocytes, and MHC class I chain-related protein A (MICA), an NKG2D ligand induced in malignant plasma cells through DNA damage, contribute to the pathogenesis of MGUS and MM. MICA expression is increased on plasma cells from MGUS patients compared with normal donors, whereas MM patients display intermediate MICA levels and a high expression of ERp5, a protein disulfide isomerase linked to MICA shedding (sMICA). MM, but not MGUS, patients harbor circulating sMICA, which triggers the down-regulation of NKG2D and impaired lymphocyte cytotoxicity. In contrast, MGUS, but not MM, patients generate high-titer anti-MICA antibodies that antagonize the suppressive effects of sMICA and stimulate dendritic cell cross-presentation of malignant plasma cells. Bortezomib, a proteasome inhibitor with anti-MM clinical efficacy, activates the DNA damage response to augment MICA expression in some MM cells, thereby enhancing their opsonization by anti-MICA antibodies. Together, these findings reveal that the alterations in the NKG2D pathway are associated with the progression from MGUS to MM and raise the possibility that anti-MICA monoclonal antibodies might prove therapeutic for these disorders.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2008
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Society of Hematology ; 2010
    In:  Blood Vol. 116, No. 21 ( 2010-11-19), p. 3911-3911
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 3911-3911
    Abstract: Abstract 3911 Perifosine is a synthetic novel alkylphospholipid, a new class of antitumor agent which targets cell membranes and inhibits Akt activation. Perifosine inhibits multiple myeloma (MM) cell growth in vitro and in vivo. Currently perifosine is under phase III clinical evaluation in MM. Although perifosine has shown significant direct antitumor effects, its effect on immune system has not yet been clarified. Dendritic cells (DCs) play a crucial role in immune system via mediating antigen-specific immune responses as well as regulating the innate and adaptive immunity through secreted cytokines. In this study, effect of perifosine on phenotype, antigen uptake, processing and presentation, and cytokine production on human monocyte-derived dendritic cells (DCs) were evaluated at clinically relevant concentrations (2.5μM to 10μM). The effect of perifosine on survival of DCs was tested by annexin V and PI staining. We observed that up to 48 hours of perifosine treatment had no effect on viability of both immature DCs and DCs during maturation by LPS (100ng/ml) or poly(IC) (25μg/ml) ( 〉 90%). Alteration of DC phenotype by perifosine was further examined by flow cytometry. Our results demonstrated that perifosine treatment led to a dose-dependent downregulation of surface antigen expression, associated with costimulation (CD40), antigen presentation (HLA-ABC) and maturation (CD83) on both immature and mature DCs at 24 and 48 hours. We next evaluated whether perifosine affected the antigen uptake capacity by immature DCs, using various sizes and forms of antigens. Compared to control, 24 hours-perifosine (10μM) treatment significantly reduced uptake capacity of both protein antigens (Alexa Fluor 488-conjugated 45-KDa protein A and 20-KDa protein G) and polysaccharide antigen (Alexa Fluor 488-conjugated 40-KD dextran) by immature DCs. Importantly, we systematically investigated the impact of perifosine on DCs involved in both classic (MHC-mediated) and non-classic (CD1d-mediated) antigen specific immune responses and report a significant impairment upon perifosine treatment. Perifosine inhibited DC-mediated T cell activation. Following 24 hours treatment, control or perifosine (10μM)-treated immature DCs were pulsed with tetanus toxoid (0.5μg/ml) overnight in the presence of LPS, and then used to stimulate autologous T cells. T cell response was inhibited as evidenced by significantly reduced IFN-gamma production detected by ELISA (control vs treatment = 15106 pg/ml vs 8332 pg/ml). We also confirmed that perifosine pretreatment of freshly isolated blood myeloid DCs led to significant inhibition of allogenic T cell immune responses (control vs treatment = 982 pg/ml vs 605 pg/ml). In addtion to presenting peptide antigens, DCs also present glycolipids to activate invariant NKT (iNKT) cells. Our data demonstrated that perifosine impairs DCs-mediated iNKT cell activation. The production of both Th1-type cytokines and Th2-type cytokines by iNKT cells were significantly repressed upon perifosine (10μM)-treated alpha-GalCer-pulsing DCs, compared to control (IFN-gamma production (control vs treatment= 11631 pg/ml vs 6768 pg/ml) and IL-4 production (control vs treatment= 1285 pg/ml vs 783 pg/ml). Since DCs play a crucial regulatory role via cytokine production, we next determined IL-12p70 and IL-10 secretion by LPS-induced DCs with and without perifosine treatment. Compared to controls, perifosine treatment at 24 hours significantly inhibited LPS-induced-IL-12p70 production by DCs (control vs treatment = 192 pg/ml vs 166 pg/ml (2.5μM), 111 pg/ml (5μM) and 45 pg/ml (10μM)), as well as inhibited IL-10 production (control vs treatment = 472 pg/ml vs 371 pg/ml (2.5μM), 306 pg/ml (5μM) and 179 pg/ml (10μM)). Mechanism study revealed that RelB, a component of NF-kappaB signaling pathway, was downregulated in immature DCs by 18 hours of perifosine treatment (10μM). We have also evaluated the effect of perifosine on the expression of IDO, a repressor of DCs activation. However, we did not observe the significant alteration of perifosine treatment compared to the control. In summary, our preclinical data suggest that perifosine is able to affect both immature and mature DCs and could contribute to inhibition of DC-mediated immune responses, indicating a need to monitor immune functions in patients under the Akt inhibitor treatment. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 106, No. 11 ( 2005-11-16), p. 2490-2490
    Abstract: Multiple Myeloma (MM) cells interact with bone marrow (BM) microenvironment leading to induction of adhesion-mediated and cytokine mediated cell signalling which plays a critical role in promoting MM cell growth, survival, migration and development of drug resistance. We have previously evaluated gene expression changes following interaction between MM cells and BM stromal cells in vitro. However, the interaction between MM cells and microenvironment cells within the bone marrow is unique and its understanding is critical in evaluating effects of novel agents. We here describe a unique model that allows us to analyse in vivo expression changes in MM cells within the human BM milieu; and present preliminary results of expression changes following these in vivo interactions. In this model, BM stromal and IL-6-dependent human MM cell line INA-6 tranduced with GFP (green fluorescent protein) was injected in human fetal bone chip transplanted into SCID mice (SCID-hu mice). The MM cells were allowed to interact with the bone marrow for variable length of time, the bone chip was then retrieved, cells flashed out and GFP+ MM cells were separated by flow cytometry. The GFP negative fraction, containing stromal elements was also separated. Similar flow isolation process was used on INA-6GFP+ cells cultured in vitro and used as control. Total RNA was isolated from these cells and gene expression profile analyzed using the HG-U133 array chip (Affimetrix). We report that interaction between INA-6 cells and the BM microenvironment in vivo induced significant changes in expression profile. In particular, we observed up-regulation of genes implicated in regulation of cell proliferation (RGS 1 and 2, FOS, FOSB, S100A4); DNA transcription (AP1, SWI/SNF related member 1); chromosome organization (Histone1, 2 and 3); cellular trafficking and transport (ARFGEF2, Aquarin 3 and ATPase 4B); and signal transduction (Chemokine ligand 2, 3 and 15, Chemokine receptor 1, 2 and 4, Dual specificity phosphatase 1 and 4, Protein tyrosine phosphatase 1, PIP5-kinase 1A and ZAP70). We also observed down-regulation of genes involved in apoptosis (BCL2-interacting killer, APC, E1A binding protein p300, Fas-associated via death domain, Caspase-activated Dnase, Raf1); and cell-cell adhesion molecules (Cadherin 15, Leupakin, Neurekin, CD44, ICAM2 and PECAM-1a). Although some similarities were observed in gene profile changes following in vitro and in vivo interaction with microenvironment cells, differences were also found. We are now evaluating the effects of interaction on expression profile of stromal cells as well as duration of interaction. Taken together these data confirm the ability of BM microenvironment to modulate gene expression profile of the MM cells in vivo to mediate the MM cell growth, survival and migration. This model now provides us with an opportunity to study effects of novel agents on MM cells expression profile in vivo to pre-clinically characterize their activity.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...