GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Stockholm University Press ; 2011
    In:  Tellus A ( 2011-03)
    In: Tellus A, Stockholm University Press, ( 2011-03)
    Type of Medium: Online Resource
    ISSN: 1600-0870 , 0280-6495
    RVK:
    RVK:
    Language: Unknown
    Publisher: Stockholm University Press
    Publication Date: 2011
    detail.hit.zdb_id: 2026987-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2018
    In:  Advances in Atmospheric Sciences Vol. 35, No. 5 ( 2018-5), p. 493-494
    In: Advances in Atmospheric Sciences, Springer Science and Business Media LLC, Vol. 35, No. 5 ( 2018-5), p. 493-494
    Type of Medium: Online Resource
    ISSN: 0256-1530 , 1861-9533
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2228064-9
    SSG: 6,25
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Environmental Research Letters, IOP Publishing, Vol. 18, No. 6 ( 2023-06-01), p. 063003-
    Abstract: Understanding the impacts of volcanic eruptions on the atmospheric circulations and surface climate in the extratropics is important for inter-annual to decadal climate prediction. Previous studies on the Northern Hemisphere climate responses to volcanic eruptions have shown that volcanic eruptions likely induce northern Eurasian warming through the intensified Arctic polar vortex in the stratosphere and the positive phase of Arctic Oscillation/North Atlantic Oscillation in the troposphere. However, large uncertainties remain and the detailed physical processes have yet to be determined. The circulation responses in the Southern Hemisphere also remain controversial with large differences between the observed and model-simulated results. In this paper, we review previous studies on the extratropical circulation and surface climate responses to volcanic eruptions and update our understanding by examining the latest observational datasets and climate model simulations. We also propose new insights into the crucial role of the latitude of volcanic eruptions in determining the extratropical circulation changes, which has received less attention. Finally, we discuss uncertainty factors that may have important implications to the extratropical circulation responses to volcanic eruptions and suggest future directions to resolve those issues through systematic model experiments.
    Type of Medium: Online Resource
    ISSN: 1748-9326
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 2255379-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2011
    In:  Journal of Climate Vol. 24, No. 5 ( 2011-03-01), p. 1438-1450
    In: Journal of Climate, American Meteorological Society, Vol. 24, No. 5 ( 2011-03-01), p. 1438-1450
    Abstract: The regime behavior of the low-order El Niño–Southern Oscillation (ENSO) model, according to an increase in the radiative–convective equilibrium sea surface temperature (SST; Tr), is studied to provide a possible explanation for the observed increase in ENSO irregularity characterized by decadal modulation. During recent decades, a clear increasing trend of the warm-pool SST has been observed. In this study, the increase in the warm-pool maximum SST is interpreted as an increase in Tr following previous studies. A bifurcation analysis with Tr as a control parameter is conducted to reveal that the degree of ENSO irregularity in the model is effectively controlled by the equilibrium states of the model. At a critical value of Tr, bifurcation analysis reveals that period-doubling bifurcation occurs and an amplitude-modulated ENSO emerges. At this point, a subcycle appears within the preexisting ENSO cycle, which initiates decadal modulation of ENSO. As Tr increases further, nested oscillations are successively generated, illustrating clear decadal modulation of ENSO. The qualitative regime changes revealed in this study are supported by the observation of regime shifts in the 1970s. With increasing Tr, the mean zonal SST gradient increases, and the model adjusts toward a “La Niña–like” mean state. Further constraint with shoaling of the mean thermocline depth and increasing stratification causes ENSO to exhibit stronger amplitude modulation. Furthermore, the timing of the period-doubling bifurcation advances with these two effects.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2011
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2011
    In:  Journal of Climate Vol. 24, No. 16 ( 2011-08-15), p. 4332-4349
    In: Journal of Climate, American Meteorological Society, Vol. 24, No. 16 ( 2011-08-15), p. 4332-4349
    Abstract: El Niño–Southern Oscillation (ENSO) is driven by large-scale ocean–atmosphere interactions in the equatorial Pacific and is sensitive to change in the mean state. Whereas conceptual models of ENSO usually consider the depth of the thermocline to be influential on the stability of ENSO, the observed changes in the depth of the 20°C isotherm are rather weak, on the order of approximately 5 m over the last decades. Conversely, change in stratification that affects both the intensity and sharpness of the thermocline can be pronounced. Here, the two-strip conceptual model of An and Jin is extended to include three parameters (i.e., the contribution of the first three baroclinic modes) that account for the main characteristics of the mean thermocline vertical structure. A stability analysis of the model is carried out that indicates that the model sustains a lower ENSO mode when the high-order baroclinic modes (M2 and M3) are considered. The sensitivity of the model solution to the coupling efficiency further indicates that, in the weak coupling regime, the model allows for several ocean basin modes at low frequency. The latter can eventually merge into a low-frequency and unstable mode representative of ENSO as the coupling efficiency increases. Also, higher baroclinic modes project more energy onto the ocean dynamics for the same input of wind forcing. Therefore, in this study’s model, a shallower, yet more intense mean thermocline may still sustain a strong (i.e., unstable) and low-frequency ENSO mode. Sensitivity tests to the strength of the two dominant feedbacks (thermocline vs zonal advection) indicate that the presence of high-order baroclinic modes favors the bifurcation from a low-frequency regime to a higher-frequency regime when the zonal advective feedback is enhanced. It is suggested that the proposed formalism can be used to interpret and measure the sensitivity of coupled general circulation models to climate change.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2011
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2020
    In:  Journal of Climate Vol. 33, No. 9 ( 2020-05-01), p. 3809-3825
    In: Journal of Climate, American Meteorological Society, Vol. 33, No. 9 ( 2020-05-01), p. 3809-3825
    Abstract: The North Pacific Oscillation (NPO), the second leading atmospheric mode in the North Pacific Ocean, is known to be responsible for climate variability and extremes in adjacent regions. The reproducibility of the NPO in climate models is thus a topic of interest for the more accurate prediction of climate extremes. By investigating the spatial characteristics of the NPO in models from phase 5 of the Coupled Model Intercomparison Project (CMIP5), this study reveals the intimate relationship between the NPO structure and the atmospheric mean states over the North Pacific. The majority of the models reasonably capture the meridional contrast of pressure anomalies, but the detailed horizontal characteristics of the NPO are found to differ among the models. Diagnostic analysis of 30 climate models and long-term observations suggest that systematic bias in the mean atmospheric baroclinicity over the North Pacific crucially affects the horizontal shape and zonal position of the NPO. In the models in which the climatological continental trough over the western North Pacific extends farther to the east, the NPO tends to be simulated farther to the east, strengthening its impact on the downstream climate. In contrast, when the climatological continental trough is reduced in size toward the west, the growth of the NPO is limited to the west, and its influence is weakened downstream. This relationship can be understood via the altered available potential and kinetic energy conversions that feed the total energy of the NPO, primarily stemming from the difference in the mean horizontal temperature gradient and stretching deformation of the mean horizontal wind.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Journal of Climate Vol. 32, No. 15 ( 2019-08-01), p. 4641-4659
    In: Journal of Climate, American Meteorological Society, Vol. 32, No. 15 ( 2019-08-01), p. 4641-4659
    Abstract: The Pacific meridional overturning circulation (PMOC) is not well known compared to the Atlantic meridional overturning circulation (AMOC), due to its absence today. However, considering PMOC development under different climate conditions shown by proxy and modeling studies, a better understanding of PMOC is appropriate to properly assess the past and future climate change associated with global ocean circulation. Here, the PMOC response to freshwater forcing in the North Atlantic (NA) is investigated using an Earth system model of intermediate complexity under glacial (i.e., Last Glacial Maximum) and interglacial [i.e., preindustrial with/without inflow through Bering Strait (BS)] conditions. The water hosing over NA led to the shutdown of the AMOC, which accompanied an active PMOC except for the preindustrial condition with the opening BS, indicating that the emergence of the PMOC is constrained by the freshwater inflow through the BS, which hinders its destabilization through enhancing ocean stratification. However, the closure of the BS itself could not explain how the sinking motion is maintained in the North Pacific. Here we found that various atmospheric and oceanic processes are involved to sustain the active PMOC. First, an atmospheric teleconnection associated with the collapsed AMOC encouraged the evaporation in the sinking region, causing buoyancy loss at the surface of the North Pacific. Second, the strengthened subpolar gyre transported saltier water northward, enhancing dense water formation. Finally, the vigorous upwelling in the Southern Ocean enabled a consistent mass supply to the sinking region, with the aid of enhanced westerlies.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2009
    In:  Journal of Climate Vol. 22, No. 6 ( 2009-03-15), p. 1499-1515
    In: Journal of Climate, American Meteorological Society, Vol. 22, No. 6 ( 2009-03-15), p. 1499-1515
    Abstract: In this study, two types of El Niño events are classified based on spatial patterns of the sea surface temperature (SST) anomaly. One is the cold tongue (CT) El Niño, which can be regarded as the conventional El Niño, and the other the warm pool (WP) El Niño. The CT El Niño is characterized by relatively large SST anomalies in the Niño-3 region (5°S–5°N, 150°–90°W), while the WP El Niño is associated with SST anomalies mostly confined to the Niño-4 region (5°S–5°N, 160°E–150°W). In addition, spatial patterns of many atmospheric and oceanic variables are also distinctively different for the two types of El Niño events. Furthermore, the difference in the transition mechanism between the two types of El Niño is clearly identified. That is, the discharge process of the equatorial heat content associated with the WP El Niño is not efficient owing to the spatial structure of SST anomaly; as a result, it cannot trigger a cold event. It is also demonstrated that zonal advective feedback (i.e., zonal advection of mean SST by anomalous zonal currents) plays a crucial role in the development of a decaying SST anomaly associated with the WP El Niño, while thermocline feedback is a key process during the CT El Niño.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 1998
    In:  Journal of Climate Vol. 11, No. 9 ( 1998-09), p. 2461-2469
    In: Journal of Climate, American Meteorological Society, Vol. 11, No. 9 ( 1998-09), p. 2461-2469
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1998
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Journal of Climate ( 2021-04-12), p. 1-44
    In: Journal of Climate, American Meteorological Society, ( 2021-04-12), p. 1-44
    Abstract: The life cycle of El Niño-Southern Oscillation (ENSO) typically follows a seasonal march, onset in spring, developing during summer, maturing in boreal winter, and decaying over the following spring. This feature is referred to as ENSO phase locking. Recent studies have noted that seasonal modulation of the ENSO growth rate is essential for this process. This study investigates the fundamental effect of a seasonally varying growth rate on ENSO phase locking using a modified seasonally-dependent recharge oscillator model. There are two phase locking regimes associated with the strength of the seasonal modulation of growth rate: (1) a weak regime in which only a single peak occurs; and (2) a strong regime in which two types of events occur either with a single peak or double peak. Notably, there is a seasonal gap in the strong regime, during which the ENSO peak cannot occur because of large-scale ocean-atmosphere coupled processes. We also retrieve a simple analytical solution of the seasonal variance of ENSO, revealing that the variance is governed by the time-integral of seasonally varying growth rate. Based on this formulation, we propose a seasonal energy index (SEI) that allows explaining the seasonal gap, and provides an intuitive explanation for ENSO phase locking, potentially applicable to global climate model ENSO diagnostics.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...