GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alshehri, Fahad  (1)
  • Gautam, Vinay Kumar  (1)
Material
Publisher
Person/Organisation
Language
Years
  • 1
    In: Sustainability, MDPI AG, Vol. 15, No. 9 ( 2023-05-05), p. 7593-
    Abstract: The present study was carried out using artificial neural network (ANN) model for predicting the sodium hazardness, i.e., sodium adsorption ratio (SAR), percent sodium (%Na) residual, Kelly’s ratio (KR), and residual sodium carbonate (RSC) in the groundwater of the Pratapgarh district of Southern Rajasthan, India. This study focuses on verifying the suitability of water for irrigational purpose, wherein more groundwater decline coupled with water quality problems compared to the other areas are observed. The southern part of the Rajasthan State is more populated as compared to the rest of the parts. The southern part of the Rajasthan is more populated as compared to the rest of the Rajasthan, which leads to the industrialization, urbanization, and evolutionary changes in the agricultural production in the southern region. Therefore, it is necessary to propose innovative methods for analyzing and predicting the water quality (WQ) for agricultural use. The study aims to develop an optimized artificial neural network (ANN) model to predict the sodium hazardness of groundwater for irrigation purposes. The ANN model was developed using ‘nntool’ in MATLAB software. The ANN model was trained and validated for ten years (2010–2020) of water quality data. An L-M 3-layer back propagation technique was adopted in ANN architecture to develop a reliable and accurate model for predicting the suitability of groundwater for irrigation. Furthermore, statistical performance indicators, such as RMSE, IA, R, and MBE, were used to check the consistency of ANN prediction results. The developed ANN model, i.e., ANN4 (3-12-1), ANN4 (4-15-1), ANN1 (4-5-1), and ANN4 (3-12-1), were found best suited for SAR, %Na, RSC, and KR water quality indicators for the Pratapgarh district. The performance analysis of the developed model (3-12-1) led to a correlation coefficient = 1, IA = 1, RMS = 0.14, and MBE = 0.0050. Hence, the proposed model provides a satisfactory match to the empirically generated datasets in the observed wells. This development of water quality modeling using an ANN model may help to useful for the planning of sustainable management and groundwater resources with crop suitability plans as per water quality.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...