GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Vegetation Science, Wiley, Vol. 31, No. 6 ( 2020-11), p. 1181-1191
    Abstract: Coastal vegetated systems are known to play a fundamental role in climate change mitigation as a result of their efficiency sequestering and storing atmospheric CO 2 . While most of the work evaluating carbon sequestration capacity has focused on global change factors that can affect carbon release from plant litter decomposition through changes in (large‐scale) environmental conditions, less is known about the possible effects of the loss (or replacement) of dominant species. We hypothesized that dominant marsh plants can influence decomposition not only through changes in litter quality but also through changes in (microscale) soil environmental conditions such as humidity, soil temperature or solar radiation. Location We performed a field manipulative experiment in a southwestern (SW) Atlantic salt marsh in Argentina. Methods We simulate a selective disturbance (i.e., removal of the dominant grass species Spartina densiflora ) thus allowing removal plots to develop an alternative plant community. To evaluate the effect of the dominant grass species on litter decomposition, in an experiment we performed a litterbag approach three years after the establishment of the removal plots. Results Results showed that the presence of S. densiflora significantly decreased litter decomposition directly by producing less labile litter, but also by effects that seem to be related to its structure as standing dominant vegetation. The experimental removal of S. densiflora led to an alternative plant community, formed by otherwise subordinate species, which is less densely packed, allowing higher radiation incidence on the soil and elevated midday soil temperature. Conclusions Our results suggest that salt marsh litter decomposition, and thus C sequestration, is determined in part by the identity of the dominant plant, not only because of the quality of the produced litter but also as a consequence of the vegetation structure . Changes in species diversity, above all changes in the dominant species in these coastal systems, could have large impacts on the carbon turnover and mitigation capacity of these ecosystems.
    Type of Medium: Online Resource
    ISSN: 1100-9233 , 1654-1103
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2047714-4
    detail.hit.zdb_id: 1053769-7
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Vegetation Science, Wiley, Vol. 28, No. 6 ( 2017-11), p. 1178-1186
    Abstract: Do herbivory and the presence of a dominant grass competitor interactively affect herbaceous communities and assembly rules in a SW Atlantic salt marsh? Location Upper salt marsh, Mar Chiquita coastal lagoon, Argentina. Methods We performed a field factorial experiment over 4 yr to evaluate the separate and interactive effects of (1) herbivory and (2) competition with the dominant grass species (i.e. Spartina densiflora ) on the salt marsh subordinate plant community. The factorial design includes dominant grass removal and herbivory manipulation. Results Our results show that herbivory and presence of the dominant competitor interactively affect subordinate plant cover and diversity. Results further indicate that, in the presence of the dominant competitor, patch‐to‐patch variation in subordinate species composition is lower than expected at random, a result consistent with the expected outcomes of deterministic exclusion following light competition. Removal of the dominant grass nevertheless led to patch‐to‐patch dissimilarity in subordinate species composition, far from the dissimilarity expected at random, indicating increased importance of deterministic processes that drive communities to diverge. Conclusion Our results show that the conditional effect of herbivory on plant diversity can be determined by the presence of a single plant species. Dominant plant species, in addition, may not only affect plant species diversity by determining the number and identity of subordinate species in a given patch (i.e. α‐diversity) but also by affecting spatial variability through habitat homogenization.
    Type of Medium: Online Resource
    ISSN: 1100-9233 , 1654-1103
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2047714-4
    detail.hit.zdb_id: 1053769-7
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2020-10-23)
    Abstract: Eutrophication is a widespread environmental change that usually reduces the stabilizing effect of plant diversity on productivity in local communities. Whether this effect is scale dependent remains to be elucidated. Here, we determine the relationship between plant diversity and temporal stability of productivity for 243 plant communities from 42 grasslands across the globe and quantify the effect of chronic fertilization on these relationships. Unfertilized local communities with more plant species exhibit greater asynchronous dynamics among species in response to natural environmental fluctuations, resulting in greater local stability (alpha stability). Moreover, neighborhood communities that have greater spatial variation in plant species composition within sites (higher beta diversity) have greater spatial asynchrony of productivity among communities, resulting in greater stability at the larger scale (gamma stability). Importantly, fertilization consistently weakens the contribution of plant diversity to both of these stabilizing mechanisms, thus diminishing the positive effect of biodiversity on stability at differing spatial scales. Our findings suggest that preserving grassland functional stability requires conservation of plant diversity within and among ecological communities.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Ecosphere, Wiley, Vol. 14, No. 6 ( 2023-06)
    Abstract: Human activities are altering ecological communities around the globe. Understanding the implications of these changes requires that we consider the composition of those communities. However, composition can be summarized by many metrics which in turn are influenced by different ecological processes. For example, incidence‐based metrics strongly reflect species gains or losses, while abundance‐based metrics are minimally affected by changes in the abundance of small or uncommon species. Furthermore, metrics might be correlated with different predictors. We used a globally distributed experiment to examine variation in species composition within 60 grasslands on six continents. Each site had an identical experimental and sampling design: 24 plots × 4 years. We expressed compositional variation within each site—not across sites—using abundance‐ and incidence‐based metrics of the magnitude of dissimilarity (Bray–Curtis and Sorensen, respectively), abundance‐ and incidence‐based measures of the relative importance of replacement (balanced variation and species turnover, respectively), and species richness at two scales (per plot‐year [alpha] and per site [gamma] ). Average compositional variation among all plot‐years at a site was high and similar to spatial variation among plots in the pretreatment year, but lower among years in untreated plots. For both types of metrics, most variation was due to replacement rather than nestedness. Differences among sites in overall within‐site compositional variation were related to several predictors. Environmental heterogeneity (expressed as the CV of total aboveground plant biomass in unfertilized plots of the site) was an important predictor for most metrics. Biomass production was a predictor of species turnover and of alpha diversity but not of other metrics. Continentality (measured as annual temperature range) was a strong predictor of Sorensen dissimilarity. Metrics of compositional variation are moderately correlated: knowing the magnitude of dissimilarity at a site provides little insight into whether the variation is driven by replacement processes. Overall, our understanding of compositional variation at a site is enhanced by considering multiple metrics simultaneously. Monitoring programs that explicitly incorporate these implications, both when designing sampling strategies and analyzing data, will have a stronger ability to understand the compositional variation of systems and to quantify the impacts of human activities.
    Type of Medium: Online Resource
    ISSN: 2150-8925 , 2150-8925
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2572257-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Ecology, Wiley, Vol. 106, No. 1 ( 2018-01), p. 101-112
    Abstract: Reductions in community evenness can lead to local extinctions as dominant species exclude subordinate species; however, herbivores can prevent competitive exclusion by consuming otherwise dominant plant species, thus increasing evenness. While these predictions logically result from chronic, gradual reductions in evenness, rapid, temporary pulses of dominance may also reduce species richness. Short pulses of dominance can occur as biotic or abiotic conditions temporarily favour one or a few species, manifested as increased temporal variability (the inverse of temporal stability) in community evenness. Here, we tested whether consumers help maintain plant diversity by reducing the temporal variability in community evenness. We tested our hypothesis by reducing herbivore abundance in a detailed study of a developing, tallgrass prairie restoration. To assess the broader implications of the importance of herbivory on community evenness as well as potential mechanisms, we paired this study with a global herbivore reduction experiment. We found that herbivores maintained plant richness in a tallgrass prairie restoration by limiting temporary pulses in dominance by a single species. Dominance by an annual species in a single year was negatively associated with species richness, suggesting that short pulses of dominance may be sufficient to exclude subordinate species. The generality of this site‐level relationship was supported by the global experiment in which inter‐annual variability in evenness declined in the presence of vertebrate herbivores over timeframes ranging in length from 2 to 5 years, preventing declines in species richness. Furthermore, inter‐annual variability of community evenness was also negatively associated with pre‐treatment species richness. Synthesis . A loss or reduction of herbivores can destabilize plant communities by allowing brief periods of dominance by one or a few species, potentially triggering a feedback cycle of dominance and extinction. Such cycles may not occur immediately following the loss of herbivores, being delayed until conditions allow temporary periods of dominance by a subset of plant species.
    Type of Medium: Online Resource
    ISSN: 0022-0477 , 1365-2745
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 3023-5
    detail.hit.zdb_id: 2004136-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2021-01-21)
    Abstract: A Correction to this paper has been published: https://doi.org/10.1038/s41467-021-20997-9.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Ecology, Wiley, Vol. 96, No. 8 ( 2015-08), p. 2147-2156
    Abstract: Bottom‐up and top‐down effects act together to exert strong control over plant growth and reproduction, but how physical stress modifies those interactive forces remains unclear. Even though empirical evidence is scarce, theory predicts that the importance of both top‐down and bottom‐up forces may decrease as physical stress increases. Here, we experimentally evaluate in the field the separate and interactive effect of salinity, nutrient availability, and crab herbivory on plant above‐ and belowground biomass, as well as on sexual and clonal reproduction in the salt marsh plant Spartina densiflora . Results show that the outcome of the interaction between nutrient availability and herbivory is highly context dependent, not only varying with the abiotic context (i.e., with or without increased salinity stress), but also with the dependent variable considered. Contrary to theoretical predictions, our results show that, consistently across different measured variables, salinity stress did not cancel bottom‐up (i.e., nutrients) or top‐down (i.e., consumers) control, but has additive effects. Our results support emerging theory by highlighting that, under many conditions, physical stress can act additively with, or even stimulate, consumer control, especially in cases where the physical stress is only experienced by basal levels of the trophic chain. Abiotic stress, as well as bottom‐up and top‐down factors, can affect salt marsh structure and function not only by affecting biomass production but also by having other indirect effects, such as changing patterns in plant biomass allocation and reproduction.
    Type of Medium: Online Resource
    ISSN: 0012-9658 , 1939-9170
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 1797-8
    detail.hit.zdb_id: 2010140-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Ecology Letters, Wiley, Vol. 25, No. 12 ( 2022-12), p. 2699-2712
    Abstract: Global change drivers, such as anthropogenic nutrient inputs, are increasing globally. Nutrient deposition simultaneously alters plant biodiversity, species composition and ecosystem processes like aboveground biomass production. These changes are underpinned by species extinction, colonisation and shifting relative abundance. Here, we use the Price equation to quantify and link the contributions of species that are lost, gained or that persist to change in aboveground biomass in 59 experimental grassland sites. Under ambient (control) conditions, compositional and biomass turnover was high, and losses (i.e. local extinctions) were balanced by gains (i.e. colonisation). Under fertilisation, the decline in species richness resulted from increased species loss and decreases in species gained. Biomass increase under fertilisation resulted mostly from species that persist and to a lesser extent from species gained. Drivers of ecological change can interact relatively independently with diversity, composition and ecosystem processes and functions such as aboveground biomass due to the individual contributions of species lost, gained or persisting.
    Type of Medium: Online Resource
    ISSN: 1461-023X , 1461-0248
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2020195-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Ecology and Evolution, Wiley, Vol. 11, No. 24 ( 2021-12), p. 17744-17761
    Abstract: Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co‐dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites ( 〈 50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.
    Type of Medium: Online Resource
    ISSN: 2045-7758 , 2045-7758
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2635675-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Ecology Letters, Wiley, Vol. 21, No. 9 ( 2018-09), p. 1364-1371
    Abstract: Environmental change can result in substantial shifts in community composition. The associated immigration and extinction events are likely constrained by the spatial distribution of species. Still, studies on environmental change typically quantify biotic responses at single spatial (time series within a single plot) or temporal (spatial beta diversity at single time points) scales, ignoring their potential interdependence. Here, we use data from a global network of grassland experiments to determine how turnover responses to two major forms of environmental change – fertilisation and herbivore loss – are affected by species pool size and spatial compositional heterogeneity. Fertilisation led to higher rates of local extinction, whereas turnover in herbivore exclusion plots was driven by species replacement. Overall, sites with more spatially heterogeneous composition showed significantly higher rates of annual turnover, independent of species pool size and treatment. Taking into account spatial biodiversity aspects will therefore improve our understanding of consequences of global and anthropogenic change on community dynamics.
    Type of Medium: Online Resource
    ISSN: 1461-023X , 1461-0248
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2020195-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...