GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: BMC Plant Biology, Springer Science and Business Media LLC, Vol. 24, No. 1 ( 2024-03-15)
    Kurzfassung: Enriching the soil with organic matter such as humic and fulvic acid to increase its content available nutrients, improves the chemical properties of the soil and increases plant growth as well as grain yield. In this study, we conducted a field experiment using humic acid (HA), fulvic acid (FA) and recommended dose (RDP) of phosphorus fertilizer to treat Hordeum vulgare seedling, in which four concentrations from HA, FA and RDP (0.0 %, 50 %, 75 % and 100%) under saline soil conditions . Moreover, some agronomic traits (e.g. grain yield, straw yield, spikes weight, plant height, spike length and spike weight) in barley seedling after treated with different concentrations from HA, FA and RDP were determined. As such the beneficial effects of these combinations to improve plant growth, N, P, and K uptake, grain yield, and its components under salinity stress were assessed. Results The findings showed that the treatments HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6), improved number of spikes/plant, 1000-grain weight, grain yield/ha, harvest index, the amount of uptake of nitrogen (N), phosphorous (P) and potassium (K) in straw and grain. The increase for grain yield over the control was 64.69, 56.77, 49.83, 49.17, and 44.22% in the first season, and 64.08, 56.63, 49.19, 48.87, and 43.69% in the second season,. Meanwhile, the increase for grain yield when compared to the recommended dose was 22.30, 16.42, 11.27, 10.78, and 7.11% in the first season, and 22.17, 16.63, 11.08, 10.84, and 6.99% in the second season. Therefore, under salinity conditions the best results were obtained when, in addition to phosphate fertilizer, the soil was treated with humic acid or foliar application the plants with fulvic acid under one of the following treatments: HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6). Conclusions The result of the use of organic amendments was an increase in the tolerance of barley plant to salinity stress, which was evident from the improvement in the different traits that occurred after the treatment using treatments that included organic amendments (humic acid or fulvic acid).
    Materialart: Online-Ressource
    ISSN: 1471-2229
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2024
    ZDB Id: 2059868-3
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Plants, MDPI AG, Vol. 11, No. 8 ( 2022-04-11), p. 1038-
    Kurzfassung: Crops around the world are facing a diversity of environmental problems, of which high temperatures are proving to be the most serious threat to crops. Polyamine putrescine (Put) acts as a master growth regulator that contributes to optimal plant growth and development and increased stress tolerance. Here, the current study aimed to elucidate how Put functions in regulating chlorophyll (Chl) metabolism, oxidative stress, and antioxidant defense, as well as to characterize the expression of genes related to heat stress in tomato seedlings under such stress. The results revealed that Put treatment significantly attenuates heat-induced damage by promoting biomass production, increasing photosynthetic efficiency, and inhibiting excessive production of oxidative stress markers. Heat stress markedly decreased the Chl content in the tomato leaf and accelerated the leaf yellowing process. However, Put-treated tomato seedlings showed a higher Chl content, which could be associated with the functions of Put in elevating PBGD activity (Chl biosynthesis enzyme) and suppressing the activity of the Chl catabolic enzyme (Chlase and MDCase). Under high-temperature stress, the expression levels of the gene encoding factors involved in Chl biosynthesis and Chl catabolism were significantly down- and upregulated, respectively, and this trend was reversed in Put-treated heat-stressed seedlings. In addition, exogenous application of Put boosted the activity of antioxidant enzymes, along with the levels of expression of their encoding genes, only in plants that were heat stressed. Furthermore, the expression levels of heat-shock-related genes (HSP90, HSP70, and HsfA1) were elevated in Put-treated, high-temperature-stressed tomato seedlings. Taken together, our results indicate that Put treatment significantly increases the heat tolerance of tomato seedlings, by elevating Chl concentrations and suppressing Chl catabolic enzyme activity, modulating endogenous free PA content, increasing antioxidant defense efficiency, and upregulating the expression of heat-shock-related genes.
    Materialart: Online-Ressource
    ISSN: 2223-7747
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2022
    ZDB Id: 2704341-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 13 ( 2022-8-1)
    Kurzfassung: The development of food and forage crops that flourish under saline conditions may be a prospective avenue for mitigating the impacts of climate change, both allowing biomass production under conditions of water-deficit and potentially expanding land-use to hitherto non-arable zones. Here, we examine responses of the native halophytic shrub Atriplex leucoclada to salt and drought stress using a factorial design, with four levels of salinity and four drought intensities under the arid conditions. A. leucoclada plants exhibited morphological and physiological adaptation to salt and water stress which had little effect on survival or growth. Under low salinity stress, water stress decreased the root length of A. leucoclada; in contrast, under highly saline conditions root length increased. Plant tissue total nitrogen, phosphorus and potassium content decreased with increasing water stress under low salinity. As salt stress increased, detrimental effects of water deficit diminished. We found that both salt and water stress had increased Na + and Cl – uptake, with both stresses having an additive and beneficial role in increasing ABA and proline content. We conclude that A. leucoclada accumulates high salt concentrations in its cellular vacuoles as a salinity resistance mechanism; this salt accumulation then becomes conducive to mitigation of water stress. Application of these mechanisms to other crops may improve tolerance and producitivity under salt and water stress, potentially improving food security.
    Materialart: Online-Ressource
    ISSN: 1664-462X
    Sprache: Unbekannt
    Verlag: Frontiers Media SA
    Publikationsdatum: 2022
    ZDB Id: 2687947-5
    ZDB Id: 2613694-6
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Frontiers in Sustainable Food Systems, Frontiers Media SA, Vol. 6 ( 2022-5-31)
    Kurzfassung: Geranyl butyrate and citronellyl butyrate esters are industrially important fruity flavors that are being used in food and as a fragrance in cosmetics. Previously terpenyl fruity flavors have been successfully synthesized in organic solvents using crude seedlings enzymes. The purpose of the current study was to standardize reaction parameters for the optimal synthesis of geranyl butyrate using the best chosen black cumin seedling lipase in an organic medium through direct esterification reactions. Geranyl butyrate and citronellyl butyrate esters were identified, quantified through gas chromatography, confirmed through GC-MS, and partiallypurified through the distillation process. Effect of organic solvents (acetonitrile, n-hexane, pentane, heptane, and toluene), alcohol and acid concentrations (0.125–0.3 M), temperature (20–50°C), incubation time (1–72 h), and enzyme concentrations (0.05–0.3 g) were studied on the synthesis of geranyl butyrate using black cumin seedling lipase. The highest conversion yields of ester (96%) were obtained when 0.25 M of geraniol and butyric acid were reacted at 37°C for 48 h in the presence of 0.25 g of crude seedling lipase enzyme in n-hexane. It was concluded that the germinated black cumin seedling lipase proved to be the best among the selected biocatalysts for the synthesis of geranyl butyrate in n-hexane.
    Materialart: Online-Ressource
    ISSN: 2571-581X
    Sprache: Unbekannt
    Verlag: Frontiers Media SA
    Publikationsdatum: 2022
    ZDB Id: 2928540-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 13 ( 2022-6-8)
    Kurzfassung: In context of the climate change, major abiotic stresses faced by plants include salt stress and drought stress. Though, plants have similar physiological mechanisms to cope with these salt and drought stresses. The physiological and biochemical response of native plants to the combined application of salinity and drought stresses are still not well-understood. Thus, to investigate the combined effect of salinity and drought stresses, an experiment was conducted on Salsola imbricata with four levels of salinity and four drought intensities under the arid climatic conditions. The experiment was conducted in a randomized complete block design with a split-plot arrangement replicated three times. S. imbricata had been found resistant to different levels of individual and combined salt and drought stresses. S. imbricata survived till the end of the experiment. Salt and water stress did not show any significant effects on shoot weight, shoot length, and root length. The drought stress affected the photosynthetic rate, ion uptake and leaf water potential. However, salt stress helped to counter this effect of drought stress. Thus, drought stress did not affect plant growth, photosynthesis rate, and ion uptake when combined with salt stress. Increased Na + and Cl − uptake under the salt stress helped in osmotic adjustment. Therefore, the leaf water potential (LWP) decreased with increasing the salt stress from 5 dSm −1 until 15 dSm −1 and increased again at 20 dSm −1 . At lower salt stress, ABA and proline content declined with increasing the drought stress. However, at higher salt stress, ABA content increased with increasing the drought stress. In conclusion, the salt stress had been found to have a protective role to drought stress for S. imbricata . S. imbricata utilized inorganic ion for osmotic adjustment at lower salinity stress but also accumulate the organic solutes to balance the osmotic pressure of the ions in the vacuole under combined stress conditions. Due to the physical lush green appearance and less maintenance requirements, S. imbricata can be recommended as a native substitute in landscaping under the salt and drought stresses conditions.
    Materialart: Online-Ressource
    ISSN: 1664-462X
    Sprache: Unbekannt
    Verlag: Frontiers Media SA
    Publikationsdatum: 2022
    ZDB Id: 2687947-5
    ZDB Id: 2613694-6
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...