GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 3388-3388
    Abstract: Fetal hemoglobin (HbF) inhibits HbS polymerization. Because of this, sufficient HbF in most sickle erythrocytes can lead to a milder disease phenotype. HbF levels differ amongst the β-globin gene (HBB) cluster haplotypes of sickle cell anemia. In the Arab-Indian (AI) haplotype, HbF was about 20% compared with 5-10% in the Bantu, Benin, and Senegal haplotypes. Functional elements linked to the HBB haplotype are likely to regulate the expression of HbF in addition to the effects of trans-acting modulators. To identify cis-acting SNPs in the HBB gene cluster that differentiate the AI haplotype from all others, including the Senegal haplotype-the Senegal haplotype shares some SNPs with the AI haplotype but its carriers have lower HbF-we studied patients with sickle cell anemia who were homozygous for HBB haplotypes by genome-wide SNP association analysis (GWAS; Table). First, we compared the results of GWAS of 42 Saudi AI haplotype homozygotes with GWAS in 71 Saudi Benin haplotype homozygotes. The only variants distinguishing these 2 populations with genome-wide significance (p-values between 9.6E-07 and 2.7E-45) were 223 SNPs in chromosome 11p15 from positions 3.5 to 6.5 mb. This region included the HBB gene cluster, its locus control region (LCR) and the upstream and downstream olfactory receptor gene clusters. The minor allele frequency of SNPs in MYB (chr 6q23), BCL11A (chr 2p16) and KLF1 (chr 19), trans-acting loci that affect expression of the HbF genes, were similar in these 2 cohorts. A novel candidate trans-acting locus was not found, however our power to detect such an association was low. We followed-up these observations by comparing allele frequencies in 303 African American cases homozygous for the haplotypes shown in the Table. Thirteen GWAS-significant SNPs, in addition to rs7482144 and rs10128556, were present in all AI haplotype cases but not in 83 Senegal haplotype chromosomes. The allele frequency of these SNPs was replicated in 62 independent AI haplotype cases. Rs2472530 is in the coding region of OR52A5; rs16912979, rs4910743 and rs4601817 are in the HBB gene cluster LCR; rs16912979 in DNase I hypersensitive site-4 altered motifs for POLR2A, GATA1, and GATA2 binding.The minor allele of rs10837771 causes a missense mutation in OR51B4 an upstream olfactory receptor gene. To see if any of these or other alleles might sometimes be associated with HbF in the Bantu and Benin haplotyes, we selected homozygotes and compound heterozygous for these haplotypes who had unexplained and uncharacteristically high HbF. Thirty-one African Americans, aged ≥5 yrs. who had a HbF of 21% were compared with 350 similar cases who had a mean HbF of 3%. Four additional SNPs on chromosome 11, from positions ranging from 5536415 to 5543705 in the UBQLNL/HBG2, region and present in 45-48% of AI haplotype and 3-13% of other haplotypes, were found at higher frequencies in the high HbF group compared with the low HbF group. These SNPs also altered transcription factor binding motifs. Loci marked by SNPs that distinguish the AI from the Senegal and other HBB haplotypes might contain functionally important polymorphisms and account in part for high HbF in AI haplotype sickle cell anemia, independent of, or in addition to, the effects associated with rs7482144 or rs10128556. They might also be rarely associated with high HbF found in other haplotypes. These observations provide a foundation for mechanistic studies focused on the role of these variants in the expression of their linked HbF genes.Table 1.non-codedallelegenomic locationSaudi AI(n=42)Saudi ben.ben(n=71)AA ben.ben(n=264)AA ban.ban(n=31)AA sen.sen(n=8)HbF (%)1711669rs10837771Gexon OR51B410.020.0200rs4601817GLCR10.020.0400rs4910743CLCR10.010.0100rs16912979CLCR00.960.920.111rs10488675Gintron HBE110.01000rs7482144*AHBG210001rs10128556#TIntron HBBP110001rs7935470COR51V110.020.0300rs10837582GOR51V1100.0200rs11036227TOR51V110000rs10734485COR51A1P00.990.9711rs10837461AOR52A110.01000rs2472522GOR52A110.01000rs2472530Gexon OR52A510.01000rs2499948TOR52A510.020.010.020Allele frequencies in haplotypes of sickle cell anemia. * Xmn1 5' HBG 2 restriction site. This SNP, not present on the SNP microarray, was genotyped independently; # LD with rs7482144; AA designates African Americans; ben-Benin; ban-Bantu; sen-Senegal. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 409-409
    Abstract: In the Arab-Indian (AI) β-globin gene (HBB) haplotype of sickle cell anemia, fetal hemoglobin (HbF) levels are higher and the disease phenotype milder than in African HBB haplotypes. To study the genetic basis of HbF regulation in the AI haplotype, whole genome sequencing (WGS) was done in 14 unrelated Saudi AI haplotype HbS homozygotes; 7 selected for low HbF (7.9±1.9%) and 7 for high HbF (18.5±3.2%). WGS was also done in 3 Indians with the AI haplotype (HbF 26.0±4.5%), 3 African Americans with the Benin haplotype selected because of the uncommonly high HbF for this haplotype (19.8±0.4%) and 1 African American homozygote with the Senegal haplotype (HbF 16.0%). Association of SNPs with HbF was tested using simple linear regression with an additive genetic model, and the Sequence Kernel Association Test using sliding windows of 5 SNPs. We found 465 SNPs that were significantly associated with HbF in a single SNP analysis (p≤10-5). Following annotation using SNPper and ENCODE RegulomeDB, PLINK was employed to remove all SNPs in high linkage disequilibrium (r2 〉 0.8) ending with 128 SNPs for follow-up analysis. These prioritized variants were further investigated using functional evaluation tools such as SCAN, Hembase, ErythronDB and the results of WGS were followed by genome-wide SNP analysis, imputation of genotypes to 1000genomes, and targeted direct genotyping in the following cohorts with sickle cell anemia: 110 AI haplotype cases (HbF 18.0±7.0%); 71 Saudi Benin haplotype cases (HbF 11.4±4.1%); 44 Indian AI haplotype homozygotes (HbF 23.0±4.8%); 894 African Americans with diverse HBB haplotypes (HbF 5.2±5.6%). All cases were examined when the HbF levels had stabilized. None of the patients were using hydroxyurea when HbF was measured. Based on WGS, 2 SNPs, rs4527238 and rs35685045 (D'=1) in intron 9 of ANTXR1 (anthrax toxin receptor 1, 2p13.1) remained associated with HbF after correction for multiple comparisons. This result was replicated in the cohort of 110 additional AI haplotype Saudi patients but not in cohorts with other HBB haplotypes. The alternative alleles of these 2 SNPs had nearly equal frequencies in Saudis with the Saudi AI haplotype and lower frequencies in Indians, Saudi Benin haplotype and African Americans with sickle cell anemia. The T allele of rs4527238 and the C allele of rs35685045 are associated with high HbF. ANTXR1 SNPs explained 10% of the HbF variability compared with 8% for BCL11A; these genes had independent, additive effects on HbF and explained about 15% of HbF variability. RNA sequencing and gene expression microarray analysis at 3 time points during the erythroid differentiation of CD34+ and iPSCs isolated from the same subjects showed that only the long splice variant of ANTXR1 was expressed. Expression increased over time in CD34+ erythroid cells and decreased over time in iPSC-derived erythroid progenitors in a pattern similar to BCL11A expression, with increasing expression as CD34+ cells matured and HbF expression fell and declining expression as iPSCs differentiated and HbF expression increased. Immunofluorescence co-staining for ANTXR1 and HbF during the erythroid differentiation of sickle iPSCs showed that reduced expression of ANTXR1 was paralleled by increased expression of HbF. By GTEx analysis, eQTLs at rs4527238 and rs35685045 showed a trend for increased expression according to genotype with rs4527238 T/T having the lowest level of expression and T/C and C/C genotypes, higher expression levels (p= 0.08) and for rs35685045, C/C the lowest expression levels and C/T and T/T higher expression levels (p= 0.07); rs4527238 and rs35685045 had no effect on the expression of BCL11A, a repressor of HbF expression located at 2p16 (p=0.8). STRING 9.1 predicted protein interactions of ANTXR1 directly with LRP6, HDAC2, BCLX and BRAC1 with the highest level of confidence (0.95) with LRP6. The HbF phenotype in AI haplotype sickle cell anemia is unique and ANTXR1 is the first trans-acting element associated with HbF whose effects appear to be limited to the Saudi AI haplotype. ANTXR1 might have dual effects on HbF, indirectly affecting hematopoiesis via interactions with LRP6 and Wnt signaling, and directly modulating HBG expression through its effects on HDAC2. A dual effect on HbF expression has been suggested for MYB. Whether targeting ANTXR1 is a therapeutic option will require further studies. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...