GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Frontiers in Genetics, Frontiers Media SA, Vol. 13 ( 2022-11-3)
    Abstract: Background: In pregnant women at risk of autosomal recessive (AR) disorders, prenatal diagnosis of AR disorders primarily involves invasive procedures, such as chorionic villus sampling and amniocentesis. Methods: We collected blood samples from four pregnant women in their first trimester who presented a risk of having a child with an AR disorder. Cell-free DNA (cfDNA) was extracted, amplified, and double-purified to reduce maternal DNA interference. Additionally, whole-genome amplification was performed for traces of residual purified cfDNA for utilization in subsequent applications. Results: Based on our findings, we detected the fetal status with the family corresponding different genes, i.e., LZTR1 , DVL2 , HBB , RNASEH2B , and MYO7A , as homozygous affected, wild-type, and heterozygous carriers, respectively. Results were subsequently confirmed by prenatal amniocentesis. The results of AmpFLSTR™ Identifiler™ presented a distinct profile from the corresponding mother profile, thereby corroborating the result reflecting the genetic material of the fetus. Conclusion: Herein, we detected AR disease mutations in the first trimester of pregnancy while surmounting limitations associated with maternal genetic material interference. Importantly, such detection strategies would allow the screening of pregnant women for common AR diseases, especially in highly consanguineous marriage populations. This technique would open avenues for the early detection and prevention of recessive diseases among the population.
    Type of Medium: Online Resource
    ISSN: 1664-8021
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2606823-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Genetics, Frontiers Media SA, Vol. 12 ( 2021-2-4)
    Abstract: Background: Non-invasive prenatal testing (NIPT) for aneuploidy in pregnant women screening has been recently established in Saudi Arabia. We aim from this study to report our experience in the implementation of this new technology in clinical practice and to assess factors influencing cell-free fetal (cffDNA) fraction and successful NIPT reporting. Methods: In total, 200 pregnant women were subjected to the NIPT test using standard methods. Next-generation sequencing (NGS) was used to analyze cffDNA in maternal plasma. Results: Out of the 200 NIPT cases, the average age of pregnant women was 35 ± 6 years (range: 21–48 years). The average cffDNA fraction of reported cases was 13.72% (range: 3–31%). Out of these 200 cases, 187 (93.5%) were at low risk, while 13 (6.5%) cases revealed high risk for aneuploidy. Among these chromosomal abnormalities, 7 (3.5%) cases of Down’s syndrome, 5 (2.5%) Edwards’ Syndrome, and only 1 case of (0.5%) Patau’s syndrome was observed. Out of the 13 high-risk cases, 2 (15.3%) were found in women below the age of 30. Conclusion: This is the first study reporting the successful implementation of an in-house NIPT screening service in Saudi Arabia. Our data showed high accuracy and sensitivity to detect high-risk cases indicating the usefulness of such a technique as an alternative to invasive testing and (hopefully) will change the common screening practice for pregnant women in Saudi Arabia.
    Type of Medium: Online Resource
    ISSN: 1664-8021
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2606823-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Molecular Genetics & Genomic Medicine, Wiley, Vol. 11, No. 4 ( 2023-04)
    Abstract: Congenital disorders of glycosylation (CDG) are a group of heterogeneous disorders caused by abnormal lipid or protein glycosylation. Variants in the FCSK gene have been reported to cause CDG. Defective FCSK‐induced CDG (FCSK–CDG) has only been reported previously in three unrelated children. Methods In this study, we genetically and clinically examined a 3‐year‐old proband with resolved infantile spasms and normal development. Standard whole‐exome sequencing (WES) and Sanger sequencing were performed to identify the functional impact of the variant. Results WES revealed a rare biallelic missense variant (c.3013G 〉 C; p.Val1005Leu) in FCSK . RT‐qPCR showed a significant depletion in FCSK gene expression in the affected individual. Western blotting revealed reduced FCSK expression at the protein level compared to that in the control. Furthermore, 3D protein modeling suggested changes in the secondary structure, which might affect the overall FCSK protein function. Conclusion This study broadens the mutation and phenotypic spectrum of FCSK‐associated developmental disorders.
    Type of Medium: Online Resource
    ISSN: 2324-9269 , 2324-9269
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2734884-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Molecular Genetics & Genomic Medicine, Wiley, Vol. 10, No. 8 ( 2022-08)
    Abstract: Dilated cardiomyopathy with ataxia syndrome (DCMA) or 3‐methylglutaconic aciduria type V is a rare global autosomal recessive mitochondrial syndrome that is clinically and genetically heterogeneous. It is characterized by early‐onset dilated cardiomyopathy and increased urinary excretion of 3‐methylglutaconic acid. As a result, some patients die due to cardiac failure, while others manifest with growth retardation, microcytic anemia, mild ataxia, and mild muscle weakness. DCMA is caused by variants in the DnaJ heat shock protein family (Hsp40) member C19 gene ( DNAJC19 ), which plays an important role in mitochondrial protein import machinery in the inner mitochondrial membrane. Methods We describe a single affected family member who presented with cardiomyopathy, global developmental delay, chest infection, seizures, elevated excretion of 3‐methylglutaconic acid, and 3‐methylglutaric acid in the urine. Results Whole‐exome sequencing followed by Sanger sequencing revealed a homozygous frameshift variant in the reading frame starting at codon 54 in exon 4 in the DNAJC19 gene (c.159del [Phe54Leufs*5]), which results in a stop codon four positions downstream. Quantitative gene expression analysis revealed that DNAJC19 mRNA expression in this patient was substantially reduced compared to the control. Conclusions We present a novel variant in the DNAJC19 gene that causes rare autosomal recessive mitochondrial 3‐methylglutaconic aciduria type V. By comparing the current case with previously reported ones, we conclude that the disease is extremely heterogeneous for reasons that are still unknown.
    Type of Medium: Online Resource
    ISSN: 2324-9269 , 2324-9269
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2734884-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...