GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Akanuma, Masao  (2)
  • Koike, Kazuhiko  (2)
  • Natural Sciences  (2)
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 3 ( 2014-01-21), p. 1090-1095
    Abstract: E-cadherin is an important adhesion molecule whose loss is associated with progression and poor prognosis of liver cancer. However, it is unclear whether the loss of E-cadherin is a real culprit or a bystander in liver cancer progression. In addition, the precise role of E-cadherin in maintaining liver homeostasis is also still unknown, especially in vivo. Here we demonstrate that liver-specific E-cadherin knockout mice develop spontaneous periportal inflammation via an impaired intrahepatic biliary network, as well as periductal fibrosis, which resembles primary sclerosing cholangitis. Inducible gene knockout studies identified E-cadherin loss in biliary epithelial cells as a causal factor of cholangitis induction. Furthermore, a few of the E-cadherin knockout mice developed spontaneous liver cancer. When knockout of E-cadherin is combined with Ras activation or chemical carcinogen administration, E-cadherin knockout mice display markedly accelerated carcinogenesis and an invasive phenotype associated with epithelial–mesenchymal transition, up-regulation of stem cell markers, and elevated ERK activation. Also in human hepatocellular carcinoma, E-cadherin loss correlates with increased expression of mesenchymal and stem cell markers, and silencing of E-cadherin in hepatocellular carcinoma cell lines causes epithelial–mesenchymal transition and increased invasiveness, suggesting that E-cadherin loss can be a causal factor of these phenotypes. Thus, E-cadherin plays critical roles in maintaining homeostasis and suppressing carcinogenesis in the liver.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 108, No. 2 ( 2011-01-11), p. 780-785
    Abstract: Mitogen-activated protein kinase (MAPK) pathways regulate multiple cellular functions and are highly active in many types of human cancers. Apoptosis signal-regulating kinase 1 (ASK1) is an upstream MAPK involved in apoptosis, inflammation, and carcinogenesis. This study investigated the role of ASK1 in the development of gastric cancer. In human gastric cancer specimens, we observed increased ASK1 expression, compared to nontumor epithelium. Using a chemically induced murine gastric tumorigenesis model, we observed increased tumor ASK1 expression, and ASK1 knockout mice had both fewer and smaller tumors than wild-type (WT) mice. ASK1 siRNA inhibited cell proliferation through the accumulation of cells in G1 phase of the cell cycle, and reduced cyclin D1 expression in gastric cancer cells, whereas these effects were uncommon in other cancer cells. ASK1 overexpression induced the transcription of cyclin D1, through AP-1 activation, and ASK1 levels were regulated by cyclin D1, via the Rb–E2F pathway. Exogenous ASK1 induced cyclin D1 expression, followed by elevated expression of endogenous ASK1. These results indicate an autoregulatory mechanism of ASK1 in the development of gastric cancer. Targeting this positive feedback loop, ASK1 may present a potential therapeutic target for the treatment of advanced gastric cancer.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2011
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...