GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ahmad, Aqeel  (2)
Material
Publisher
Language
Years
  • 1
    Online Resource
    Online Resource
    Hindawi Limited ; 2022
    In:  BioMed Research International Vol. 2022 ( 2022-6-7), p. 1-10
    In: BioMed Research International, Hindawi Limited, Vol. 2022 ( 2022-6-7), p. 1-10
    Abstract: There are many thyroid diseases affecting people all over the world. Many diseases affect the thyroid gland, like hypothyroidism, hyperthyroidism, and thyroid cancer. Thyroid inefficiency can cause severe symptoms in patients. Effective classification and machine learning play a significant role in the timely detection of thyroid diseases. This timely classification will indeed affect the timely treatment of the patients. Automatic and precise thyroid nodule detection in ultrasound pictures is critical for reducing effort and radiologists’ mistake rate. Medical images have evolved into one of the most valuable and consistent data sources for machine learning generation. In this paper, various machine learning algorithms like decision tree, random forest algorithm, KNN, and artificial neural networks on the dataset create a comparative analysis to better predict the disease based on parameters established from the dataset. Also, the dataset has been manipulated for accurate prediction for the classification. The classification was performed on both the sampled and unsampled datasets for better comparison of the dataset. After dataset manipulation, we obtained the highest accuracy for the random forest algorithm, equal to 94.8% accuracy and 91% specificity.
    Type of Medium: Online Resource
    ISSN: 2314-6141 , 2314-6133
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2698540-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: BioMed Research International, Hindawi Limited, Vol. 2022 ( 2022-5-30), p. 1-10
    Abstract: One of the most well-known methods for solving real-world and complex optimization problems is the gravitational search algorithm (GSA). The gravitational search technique suffers from a sluggish convergence rate and weak local search capabilities while solving complicated optimization problems. A unique hybrid population-based strategy is designed to tackle the problem by combining dynamic multiswarm particle swarm optimization with gravitational search algorithm (GSADMSPSO). In this manuscript, GSADMSPSO is used as novel training techniques for Feedforward Neural Networks (FNNs) in order to test the algorithm’s efficiency in decreasing the issues of local minima trapping and existing evolutionary learning methods’ poor convergence rate. A novel method GSADMSPSO distributes the primary population of masses into smaller subswarms, according to the proposed algorithm, and also stabilizes them by offering a new neighborhood plan. At this time, each agent (particle) increases its position and velocity by using the suggested algorithm’s global search capability. The fundamental concept is to combine GSA’s ability with DMSPSO’s to improve the performance of a given algorithm’s exploration and exploitation. The suggested algorithm’s performance on a range of well-known benchmark test functions, GSA, and its variations is compared. The results of the experiments suggest that the proposed method outperforms the other variants in terms of convergence speed and avoiding local minima; FNNs are being trained.
    Type of Medium: Online Resource
    ISSN: 2314-6141 , 2314-6133
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2698540-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...