GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ade, Peter A. R.  (4)
  • 2020-2024  (4)
  • 1
    In: Journal of Cosmology and Astroparticle Physics, IOP Publishing, Vol. 2020, No. 12 ( 2020-12-01), p. 045-045
    Abstract: We present the temperature and polarization angular power spectra of the CMB measured by the Atacama Cosmology Telescope (ACT) from 5400 deg 2 of the 2013–2016 survey, which covers 〉 15000 deg 2 at 98 and 150 GHz. For this analysis we adopt a blinding strategy to help avoid confirmation bias and, related to this, show numerous checks for systematic error done before unblinding. Using the likelihood for the cosmological analysis we constrain secondary sources of anisotropy and foreground emission, and derive a “CMB-only” spectrum that extends to ℓ=4000. At large angular scales, foreground emission at 150 GHz is ∼1% of TT and EE within our selected regions and consistent with that found by Planck . Using the same likelihood, we obtain the cosmological parameters for ΛCDM for the ACT data alone with a prior on the optical depth of τ=0.065±0.015. ΛCDM is a good fit. The best-fit model has a reduced χ 2 of 1.07 (PTE=0.07) with H 0 =67.9±1.5 km/s/Mpc. We show that the lensing BB signal is consistent with ΛCDM and limit the celestial EB polarization angle to ψ P  =−0.07 ̂ ±0.09 ̂ . We directly cross correlate ACT with Planck and observe generally good agreement but with some discrepancies in TE. All data on which this analysis is based will be publicly released.
    Type of Medium: Online Resource
    ISSN: 1475-7516
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2020
    detail.hit.zdb_id: 2104147-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Cosmology and Astroparticle Physics, IOP Publishing, Vol. 2020, No. 12 ( 2020-12-01), p. 047-047
    Abstract: We present new arcminute-resolution maps of the Cosmic Microwave Background temperature and polarization anisotropy from the Atacama Cosmology Telescope, using data taken from 2013–2016 at 98 and 150 GHz. The maps cover more than 17,000 deg 2 , the deepest 600 deg 2 with noise levels below 10μK-arcmin. We use the power spectrum derived from almost 6,000 deg 2 of these maps to constrain cosmology. The ACT data enable a measurement of the angular scale of features in both the divergence-like polarization and the temperature anisotropy, tracing both the velocity and density at last-scattering. From these one can derive the distance to the last-scattering surface and thus infer the local expansion rate, H 0 . By combining ACT data with large-scale information from WMAP we measure H 0 =67.6± 1.1 km/s/Mpc, at 68% confidence, in excellent agreement with the independently-measured Planck satellite estimate (from ACT alone we find H 0 =67.9± 1.5 km/s/Mpc). The ΛCDM model provides a good fit to the ACT data, and we find no evidence for deviations: both the spatial curvature, and the departure from the standard lensing signal in the spectrum, are zero to within 1σ; the number of relativistic species, the primordial Helium fraction, and the running of the spectral index are consistent with ΛCDM predictions to within 1.5–2.2σ. We compare ACT, WMAP , and Planck at the parameter level and find good consistency; we investigate how the constraints on the correlated spectral index and baryon density parameters readjust when adding CMB large-scale information that ACT does not measure. The DR4 products presented here will be publicly released on the NASA Legacy Archive for Microwave Background Data Analysis.
    Type of Medium: Online Resource
    ISSN: 1475-7516
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2020
    detail.hit.zdb_id: 2104147-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: The Astrophysical Journal, American Astronomical Society, Vol. 962, No. 2 ( 2024-02-01), p. 113-
    Abstract: We present cosmological constraints from a gravitational lensing mass map covering 9400 deg 2 reconstructed from measurements of the cosmic microwave background (CMB) made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with measurements of baryon acoustic oscillations and big bang nucleosynthesis, we obtain the clustering amplitude σ 8 = 0.819 ± 0.015 at 1.8% precision, S 8 ≡ σ 8 ( Ω m / 0.3 ) 0.5 = 0.840 ± 0.028 , and the Hubble constant H 0 = (68.3 ± 1.1) km s −1 Mpc −1 at 1.6% precision. A joint constraint with Planck CMB lensing yields σ 8 = 0.812 ± 0.013, S 8 ≡ σ 8 ( Ω m / 0.3 ) 0.5 = 0.831 ± 0.023 , and H 0 = (68.1 ± 1.0) km s −1 Mpc −1 . These measurements agree with ΛCDM extrapolations from the CMB anisotropies measured by Planck. We revisit constraints from the KiDS, DES, and HSC galaxy surveys with a uniform set of assumptions and find that S 8 from all three are lower than that from ACT+Planck lensing by levels ranging from 1.7 σ to 2.1 σ . This motivates further measurements and comparison, not just between the CMB anisotropies and galaxy lensing but also between CMB lensing probing z ∼ 0.5–5 on mostly linear scales and galaxy lensing at z ∼ 0.5 on smaller scales. We combine with CMB anisotropies to constrain extensions of ΛCDM, limiting neutrino masses to ∑ m ν 〈 0.13 eV (95% c.l.), for example. We describe the mass map and related data products that will enable a wide array of cross-correlation science. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the ΛCDM model, while paving a promising path for neutrino physics with lensing from upcoming ground-based CMB surveys.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2024
    detail.hit.zdb_id: 2960-9
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: The Astrophysical Journal, American Astronomical Society, Vol. 962, No. 2 ( 2024-02-01), p. 112-
    Abstract: We present new measurements of cosmic microwave background (CMB) lensing over 9400 deg 2 of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB data set, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at 2.3% precision (43 σ significance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure that our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. Our CMB lensing power spectrum measurement provides constraints on the amplitude of cosmic structure that do not depend on Planck or galaxy survey data, thus giving independent information about large-scale structure growth and potential tensions in structure measurements. The baseline spectrum is well fit by a lensing amplitude of A lens = 1.013 ± 0.023 relative to the Planck 2018 CMB power spectra best-fit ΛCDM model and A lens = 1.005 ± 0.023 relative to the ACT DR4 + WMAP best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination S 8 CMBL ≡ σ 8 Ω m / 0.3 0.25 of S 8 CMBL = 0.818 ± 0.022 from ACT DR6 CMB lensing alone and S 8 CMBL = 0.813 ± 0.018 when combining ACT DR6 and Planck NPIPE CMB lensing power spectra. These results are in excellent agreement with ΛCDM model constraints from Planck or ACT DR4 + WMAP CMB power spectrum measurements. Our lensing measurements from redshifts z ∼ 0.5–5 are thus fully consistent with ΛCDM structure growth predictions based on CMB anisotropies probing primarily z ∼ 1100. We find no evidence for a suppression of the amplitude of cosmic structure at low redshifts.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2024
    detail.hit.zdb_id: 2960-9
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...