GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Marine Science Vol. 9 ( 2022-9-12)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 9 ( 2022-9-12)
    Abstract: In Scotland, bivalves are widely distributed. However, their larvae dispersion is still largely unknown and difficult to assess in situ . And, while Mytilus spp. dominate shellfish production, it is mostly dependent on natural spat recruitment from wild populations. Understanding the larval distribution pattern would safeguard natural resources while also ensuring sustainable farming practises. The feasibility of a model that simulates biophysical interactions between larval behaviour and ocean motions was investigated. We employed an unstructured tri-dimensional hydrodynamic model (finite volume coastal ocean model) to drive a particle tracking model, where prediction of larval movement and dispersal at defined locations might aid in population monitoring and spat recruitment. Our findings reveal a strong link between larval distribution and meteorological factors such as wind forces and currents velocity. The model, also, depicts a fast and considerable larval movement, resulting in a substantial mix of plankton and bivalve larvae, forming a large connection between the southern and northern regions of Scotland’s West coast. This enables us to forecast the breeding grounds of any area of interest, potentially charting connectivity between cultivated and wild populations. These results have significant implications for the dynamics of ecologically and economically important species, such as population growth and loss, harvesting and agricultural management in the context of climate change, and sustainable shellfish fisheries management. Furthermore, the observations on Scottish water flow suggest that tracking particles with similar behaviour to bivalve larvae, such as other pelagic larval stages of keystone species and potential pathogens such as sea lice, may have policy and farming implications, as well as disease control amid global warming issues.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Wiley ; 2014
    In:  Ecography Vol. 37, No. 7 ( 2014-07), p. 698-710
    In: Ecography, Wiley, Vol. 37, No. 7 ( 2014-07), p. 698-710
    Type of Medium: Online Resource
    ISSN: 0906-7590
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 2024917-2
    detail.hit.zdb_id: 1112659-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Wiley ; 2014
    In:  Journal of Applied Ecology Vol. 51, No. 2 ( 2014-04), p. 330-338
    In: Journal of Applied Ecology, Wiley, Vol. 51, No. 2 ( 2014-04), p. 330-338
    Abstract: New habitat close to biogeographical barriers has implications for existing species’ distributions and genetic population structure. It also affects the spread of non‐native species and ‘climate migrants’. Monitoring these sites for the presence of such species will be important in determining the future ecology of coastal habitat and in maintaining economic aquaculture and marina operations. Future model studies should focus on particular species of importance, taking account of their biology and current distribution.
    Type of Medium: Online Resource
    ISSN: 0021-8901 , 1365-2664
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 2020408-5
    detail.hit.zdb_id: 410405-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Reviews in Aquaculture, Wiley, Vol. 14, No. 2 ( 2022-03), p. 791-815
    Abstract: Offshore aquaculture has gained momentum in recent years, and the production of an increasing number of marine fish species is being relocated offshore. Initially, predictions of the advantages that offshore aquaculture would present over nearshore farming were made without enough science‐based evidence. Now, with more scientific knowledge, this review revisits past predictions and expectations of offshore aquaculture. We analysed and explained the oceanographic features that define offshore and nearshore sites. Using Atlantic salmon ( Salmo salar ) as a case study, we focussed on sea lice, amoebic gill disease, and the risk of harmful algal blooms, as well as the direct effects of the oceanography on the health and physiology of fish. The operational and licencing challenges and advantages of offshore aquaculture are also considered. The lack of space in increasingly saturated sheltered areas will push new farms out to offshore locations and, if appropriate steps are followed, offshore aquaculture can be successful. Firstly, the physical capabilities of the farmed fish species and infrastructure must be fully understood. Secondly, the oceanography of potential sites must be carefully studied to confirm that they are compatible with the species‐specific capabilities. And, thirdly, an economic plan considering the operational costs and licencing limitations of the site must be developed. This review will serve as a guide and a compilation of information for researchers and stakeholders.
    Type of Medium: Online Resource
    ISSN: 1753-5123 , 1753-5131
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2479690-6
    SSG: 21,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...