GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Abele, Doris  (1)
  • Fischer, Natalie  (1)
Material
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    The Company of Biologists ; 2011
    In:  Journal of Experimental Biology Vol. 214, No. 24 ( 2011-12-15), p. 4223-4233
    In: Journal of Experimental Biology, The Company of Biologists, Vol. 214, No. 24 ( 2011-12-15), p. 4223-4233
    Abstract: Arctica islandica is the longest-lived non-colonial animal found so far, and reaches individual ages of 150 years in the German Bight (GB) and more than 350 years around Iceland (IC). Frequent burrowing and physiological adjustments to low tissue oxygenation in the burrowed state are proposed to lower mitochondrial reactive oxygen species (ROS) formation. We investigated burrowing patterns and shell water partial pressure of oxygen (PO2) in experiments with live A. islandica. Furthermore, succinate accumulation and antioxidant defences were recorded in tissues of bivalves in the normoxic or metabolically downregulated state, as well as ROS formation in isolated gills exposed to normoxia, hypoxia and hypoxia/reoxygenation. IC bivalves burrowed more frequently and deeper in winter than in summer under in situ conditions, and both IC and GB bivalves remained burrowed for between 1 and 6 days in laboratory experiments. Shell water PO2 was & lt;5 kPa when bivalves were maintained in fully oxygenated seawater, and ventilation increased before animals entered the state of metabolic depression. Succinate did not accumulate upon spontaneous shell closure, although shell water PO2 was 0 kPa for over 24 h. A ROS burst was absent in isolated gills during hypoxia/reoxygenation, and antioxidant enzyme activities were not enhanced in metabolically depressed clams compared with normally respiring clams. Postponing the onset of anaerobiosis in the burrowed state and under hypoxic exposure presumably limits the need for elevated recovery respiration upon surfacing and oxidative stress during reoxygenation.
    Type of Medium: Online Resource
    ISSN: 1477-9145 , 0022-0949
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2011
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...