GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aaslyng, Margit Dall  (2)
  • 1
    In: Foods, MDPI AG, Vol. 11, No. 22 ( 2022-11-15), p. 3647-
    Abstract: Increasing interest in plant-based proteins is particularly relevant in the food service sector. For specific groups, e.g., older adults, it may be challenging to ensure the consumption of protein of sufficient quality. One way of doing this could be through the fortification of a staple food such as bread. This study examined wheat buns, in which 0%, 20%, 35% and 50% of the flour was replaced with three different milled texturized vegetable proteins (TVP) of different plant protein combinations. Sensory and baking qualities were evaluated through sensory profiling and measurements of rising ability, baking loss, protein content and colour. An expert assessment and a robustness test were conducted to evaluate potential use in the food service sector. By substituting 35% of the wheat flour with milled TVP, it was possible to increase the protein content of the buns by 83% (up to 25% of DM) and still maintain an acceptable quality. The different TVPs showed that pea and faba bean or pea, faba bean and quinoa were more suitable in bread fortification than pea, faba bean and hemp. The study demonstrates the potential for producing quality bread for people who need a high protein intake in all their meals.
    Type of Medium: Online Resource
    ISSN: 2304-8158
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704223-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2023
    In:  Food & Function Vol. 14, No. 16 ( 2023), p. 7361-7374
    In: Food & Function, Royal Society of Chemistry (RSC), Vol. 14, No. 16 ( 2023), p. 7361-7374
    Abstract: Plant proteins have low protein nutritional quality due to their unbalanced indispensable amino acid (IAA) profile and the presence of antinutritional factors (ANFs) that limit protein digestibility. The blending of pulses with cereals/pseudocereals can ensure a complete protein source of IAA. In addition, extrusion may be an effective way to reduce ANFs and improve protein digestibility. Thereby, we aimed to improve the protein nutritional quality of plant protein ingredients by blending different protein sources and applying extrusion processing. Protein blends were prepared with pea, faba bean, quinoa, hemp, and/or oat concentrates or flours, and extrudates were prepared either rich in pulses (texturized vegetable proteins, TVPs) or rich in cereals (referred to here as Snacks). After extrusion, all samples showed a reduction in trypsin inhibitor activity (TIA) greater than 71%. Extrusion caused an increase in the total in vitro protein digestibility (IVPD) of TVPs, whereas no significant effect was shown for the snacks. According to the molecular weight distribution, TVPs presented protein aggregation. The results suggest that the positive effect of decreased TIA on IVPD is partially counteracted by the formation of aggregates during extrusion which restricts enzyme accessibility. After extrusion, all snacks retained a balanced amino acid score whereas a small loss of methionine + cysteine was observed in the TVPs, resulting in a small reduction in IAA content. Thus, extrusion has the potential to improve the nutritional quality of TVPs by reducing TIA and increasing protein digestibility.
    Type of Medium: Online Resource
    ISSN: 2042-6496 , 2042-650X
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2023
    detail.hit.zdb_id: 2578152-2
    SSG: 21
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...