GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2010
    In:  Eos, Transactions American Geophysical Union Vol. 91, No. 48 ( 2010-11-30), p. 457-458
    In: Eos, Transactions American Geophysical Union, American Geophysical Union (AGU), Vol. 91, No. 48 ( 2010-11-30), p. 457-458
    Abstract: Through global climate studies and atmospheric surveys, scientists now know that the release of carbon dioxide (CO 2 ) into the atmosphere by burning fossil fuels has the potential to alter global climate. The oceans represent a key sink for anthropogenic CO 2 (C ant ), but their capacity as a sink and how this sink has evolved over time have yet to be fully determined. Further, uptake of CO 2 from the atmosphere directly influences the world's oceans by, for instance, increasing acidity, but how future changes will evolve is also poorly known. The reason little is known about oceanic Cant is because only a small percentage of the ocean has been tracked by research cruises that collect carbon data. Even data from those cruises lack the standardization needed to compare different results over time. To help fix this, a collection of interior ocean carbon data has recently been published: The Carbon Dioxide in the Atlantic Ocean (CARINA) data collection contains information from 188 oceanographic cruises and represents a major boost of readily available, high‐quality, and uniform data. A companion effort, the Pacific Ocean Interior Carbon (PACIFICA) data collection, will increase global coverage by providing standardized products from the Pacific Ocean.
    Type of Medium: Online Resource
    ISSN: 0096-3941 , 2324-9250
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2010
    detail.hit.zdb_id: 24845-9
    detail.hit.zdb_id: 2118760-5
    detail.hit.zdb_id: 240154-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2008
    In:  Journal of Geophysical Research Vol. 113, No. C4 ( 2008-04-29)
    In: Journal of Geophysical Research, American Geophysical Union (AGU), Vol. 113, No. C4 ( 2008-04-29)
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2008
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2022
    In:  Eos Vol. 103 ( 2022-06-22)
    In: Eos, American Geophysical Union (AGU), Vol. 103 ( 2022-06-22)
    Abstract: Less than half of the anthropogenic carbon dioxide remains in the atmosphere to drive climate change. The rest is being removed by mysterious processes in the land, biosphere, and ocean.
    Type of Medium: Online Resource
    ISSN: 2324-9250
    Language: Unknown
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2022
    detail.hit.zdb_id: 2118760-5
    detail.hit.zdb_id: 240154-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Analytical Chemistry, American Chemical Society (ACS), Vol. 80, No. 5 ( 2008-03-01), p. 1536-1545
    Type of Medium: Online Resource
    ISSN: 0003-2700 , 1520-6882
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2008
    detail.hit.zdb_id: 1483443-1
    detail.hit.zdb_id: 1508-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 363, No. 6432 ( 2019-03-15), p. 1193-1199
    Abstract: We quantify the oceanic sink for anthropogenic carbon dioxide (CO 2 ) over the period 1994 to 2007 by using observations from the global repeat hydrography program and contrasting them to observations from the 1990s. Using a linear regression–based method, we find a global increase in the anthropogenic CO 2 inventory of 34 ± 4 petagrams of carbon (Pg C) between 1994 and 2007. This is equivalent to an average uptake rate of 2.6 ± 0.3 Pg C year −1 and represents 31 ± 4% of the global anthropogenic CO 2 emissions over this period. Although this global ocean sink estimate is consistent with the expectation of the ocean uptake having increased in proportion to the rise in atmospheric CO 2 , substantial regional differences in storage rate are found, likely owing to climate variability–driven changes in ocean circulation.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2019
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2022
    In:  Reviews of Geophysics Vol. 60, No. 2 ( 2022-06)
    In: Reviews of Geophysics, American Geophysical Union (AGU), Vol. 60, No. 2 ( 2022-06)
    Abstract: Anthropogenic CO 2 emissions would have produced larger atmospheric increases if ocean and land sinks had not removed over half of this CO 2 Uptake by both ocean and land sinks increased in response to rising atmospheric CO 2 levels, maintaining the airborne fraction near 45% Improved and sustained measurements and models are needed to track changes in sinks and enhance the scientific basis for carbon management
    Type of Medium: Online Resource
    ISSN: 8755-1209 , 1944-9208
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2022
    detail.hit.zdb_id: 2035391-1
    detail.hit.zdb_id: 209852-0
    detail.hit.zdb_id: 209853-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Copernicus GmbH ; 2021
    In:  Ocean Science Vol. 17, No. 2 ( 2021-04-09), p. 509-525
    In: Ocean Science, Copernicus GmbH, Vol. 17, No. 2 ( 2021-04-09), p. 509-525
    Abstract: Abstract. This study evaluates the potential usefulness of the halogenated compounds HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125, HFC-23, PFC-14, and PFC-116 as oceanographic transient tracers to better constrain ocean ventilation processes. We do this mainly in terms of four aspects of the characteristics of the potential tracers: input function (including atmospheric history and historical surface saturation), seawater solubility, feasibility of measurement, and stability in seawater; of these, atmospheric history and seawater solubility have been investigated in previous work. For the latter two aspects, we collected seawater samples and modified an established analytical technique for the Medusa–Aqua system to simultaneously measure these compounds. HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, and HFC-125 have been measured in depth profiles in the Mediterranean Sea for the first time and for reproducibility in the Baltic Sea. We found that the historical surface saturation of halogenated transient tracers in the Mediterranean Sea is estimated to have been nearly constant at 94 % based on historical data. Of the investigated compounds, HCFC-142b, HCFC-141b, and HFC-134a are found to currently be the most promising transient tracers in the ocean. The compounds that have the greatest potential as future tracers are PFC-14 and PFC-116, mainly hampered by the low solubility in seawater that creates challenging analytical conditions, i.e., low concentrations. HCFC-22 is found to be likely unstable in warm seawater, which compromises the potential as an oceanic transient tracer, although it is possibly useful in colder water. For the compounds HFC-125 and HFC-23, we were not able to fully evaluate their potential as tracers due to inconclusive results, especially regarding their solubility and stability in seawater, but also with regard to potential analytical challenges. On the other hand, HFC-125, HFC-23, and HCFC-22 might not need to be considered because there are alternative tracers with similar input histories that are better suited as transient tracers.
    Type of Medium: Online Resource
    ISSN: 1812-0792
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2183769-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Copernicus GmbH ; 2016
    In:  Ocean Science Vol. 12, No. 1 ( 2016-02-25), p. 319-333
    In: Ocean Science, Copernicus GmbH, Vol. 12, No. 1 ( 2016-02-25), p. 319-333
    Abstract: Abstract. The storage of anthropogenic carbon in the ocean's interior is an important process which modulates the increasing carbon dioxide concentrations in the atmosphere. The polar regions are expected to be net sinks for anthropogenic carbon. Transport estimates of dissolved inorganic carbon and the anthropogenic offset can thus provide information about the magnitude of the corresponding storage processes. Here we present a transient tracer, dissolved inorganic carbon (DIC) and total alkalinity (TA) data set along 78°50′ N sampled in the Fram Strait in 2012. A theory on tracer relationships is introduced, which allows for an application of the inverse-Gaussian–transit-time distribution (IG-TTD) at high latitudes and the estimation of anthropogenic carbon concentrations. Mean current velocity measurements along the same section from 2002–2010 were used to estimate the net flux of DIC and anthropogenic carbon by the boundary currents above 840 m through the Fram Strait. The new theory explains the differences between the theoretical (IG-TTD-based) tracer age relationship and the specific tracer age relationship of the field data, by saturation effects during water mass formation and/or the deliberate release experiment of SF6 in the Greenland Sea in 1996, rather than by different mixing or ventilation processes. Based on this assumption, a maximum SF6 excess of 0.5–0.8 fmol kg−1 was determined in the Fram Strait at intermediate depths (500–1600 m). The anthropogenic carbon concentrations are 50–55 µmol kg−1 in the Atlantic Water/Recirculating Atlantic Water, 40–45 µmol kg−1 in the Polar Surface Water/warm Polar Surface Water and between 10 and 35 µmol kg−1 in the deeper water layers, with lowest concentrations in the bottom layer. The net fluxes through the Fram Strait indicate a net outflow of  ∼  0.4 DIC and  ∼  0.01 PgC yr−1 anthropogenic carbon from the Arctic Ocean into the North Atlantic, albeit with high uncertainties.
    Type of Medium: Online Resource
    ISSN: 1812-0792
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2183769-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Earth System Science Data, Copernicus GmbH, Vol. 8, No. 2 ( 2016-08-15), p. 325-340
    Abstract: Abstract. We present a mapped climatology (GLODAPv2.2016b) of ocean biogeochemical variables based on the new GLODAP version 2 data product (Olsen et al., 2016; Key et al., 2015), which covers all ocean basins over the years 1972 to 2013. The quality-controlled and internally consistent GLODAPv2 was used to create global 1°  ×  1° mapped climatologies of salinity, temperature, oxygen, nitrate, phosphate, silicate, total dissolved inorganic carbon (TCO2), total alkalinity (TAlk), pH, and CaCO3 saturation states using the Data-Interpolating Variational Analysis (DIVA) mapping method. Improving on maps based on an earlier but similar dataset, GLODAPv1.1, this climatology also covers the Arctic Ocean. Climatologies were created for 33 standard depth surfaces. The conceivably confounding temporal trends in TCO2 and pH due to anthropogenic influence were removed prior to mapping by normalizing these data to the year 2002 using first-order calculations of anthropogenic carbon accumulation rates. We additionally provide maps of accumulated anthropogenic carbon in the year 2002 and of preindustrial TCO2. For all parameters, all data from the full 1972–2013 period were used, including data that did not receive full secondary quality control. The GLODAPv2.2016b global 1°  ×  1° mapped climatologies, including error fields and ancillary information, are available at the GLODAPv2 web page at the Carbon Dioxide Information Analysis Center (CDIAC; doi:10.3334/CDIAC/OTG.NDP093_GLODAPv2).
    Type of Medium: Online Resource
    ISSN: 1866-3516
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2475469-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Earth System Science Data, Copernicus GmbH, Vol. 8, No. 2 ( 2016-08-15), p. 297-323
    Abstract: Abstract. Version 2 of the Global Ocean Data Analysis Project (GLODAPv2) data product is composed of data from 724 scientific cruises covering the global ocean. It includes data assembled during the previous efforts GLODAPv1.1 (Global Ocean Data Analysis Project version 1.1) in 2004, CARINA (CARbon IN the Atlantic) in 2009/2010, and PACIFICA (PACIFic ocean Interior CArbon) in 2013, as well as data from an additional 168 cruises. Data for 12 core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, and CCl4) have been subjected to extensive quality control, including systematic evaluation of bias. The data are available in two formats: (i) as submitted but updated to WOCE exchange format and (ii) as a merged and internally consistent data product. In the latter, adjustments have been applied to remove significant biases, respecting occurrences of any known or likely time trends or variations. Adjustments applied by previous efforts were re-evaluated. Hence, GLODAPv2 is not a simple merging of previous products with some new data added but a unique, internally consistent data product. This compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 µmol kg−1 in dissolved inorganic carbon, 6 µmol kg−1 in total alkalinity, 0.005 in pH, and 5 % for the halogenated transient tracers.The original data and their documentation and doi codes are available at the Carbon Dioxide Information Analysis Center (http://cdiac.ornl.gov/oceans/GLODAPv2/). This site also provides access to the calibrated data product, which is provided as a single global file or four regional ones – the Arctic, Atlantic, Indian, and Pacific oceans – under the doi:10.3334/CDIAC/OTG.NDP093_GLODAPv2. The product files also include significant ancillary and approximated data. These were obtained by interpolation of, or calculation from, measured data. This paper documents the GLODAPv2 methods and products and includes a broad overview of the secondary quality control results. The magnitude of and reasoning behind each adjustment is available on a per-cruise and per-variable basis in the online Adjustment Table.
    Type of Medium: Online Resource
    ISSN: 1866-3516
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2475469-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...