GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 128, No. 12 ( 2023-06-27)
    Abstract: Temperature profiles retrieved from remotely sensed infrared radiances characterize the valley boundary layer over different snow covers The nocturnal inversion in a high‐altitude mountain valley is mixed out over low snow cover and persists when snow cover is high NOAA's operational weather prediction model struggles to correctly forecast the boundary layer especially when snow cover is high
    Type of Medium: Online Resource
    ISSN: 2169-897X , 2169-8996
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2023
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 2969341-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2023
    In:  Journal of Geophysical Research: Atmospheres Vol. 128, No. 6 ( 2023-03-27)
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 128, No. 6 ( 2023-03-27)
    Abstract: Decorrelation length scales varied by cloud regime at the Atmospheric Radiation Measurement Program Southern Great Plains site between 0.04 and 4.58 km Decorrelation length scales varied by site with values ranging from near 1 km in the Arctic to near 3 km in Brazil Decorrelation length scales for the same cloud regime across the sites were similar, although some cloud regimes exhibited differences
    Type of Medium: Online Resource
    ISSN: 2169-897X , 2169-8996
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2023
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 2969341-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Climate Dynamics, Springer Science and Business Media LLC, Vol. 37, No. 7-8 ( 2011-10), p. 1643-1660
    Type of Medium: Online Resource
    ISSN: 0930-7575 , 1432-0894
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2011
    detail.hit.zdb_id: 382992-3
    detail.hit.zdb_id: 1471747-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of Applied Meteorology and Climatology Vol. 53, No. 12 ( 2014-12), p. 2775-2789
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 53, No. 12 ( 2014-12), p. 2775-2789
    Abstract: Observations of cloud properties and thermodynamics from two Arctic locations, Barrow, Alaska, and Surface Heat Budget of the Arctic (SHEBA), are examined. A comparison of in-cloud thermodynamic mixing characteristics for low-level, single-layer clouds from nearly a decade of data at Barrow and one full annual cycle over the sea ice at SHEBA is performed. These cloud types occur relatively frequently, evident in 27%–30% of all cloudy cases. To understand the role of liquid water path (LWP), or lack thereof, on static in-cloud mixing, cloud layers are separated into optically thin and optically thick LWP subclasses. Clouds with larger LWPs tend to have a deeper in-cloud mixed layer relative to optically thinner clouds. However, both cloud LWP subclasses are frequently characterized by an in-cloud stable layer above the mixed layer top. The depth of the stable layer generally correlates with an increased temperature gradient across the layer. This layer often contains a specific humidity inversion, but it is more frequently present when cloud LWP is optically thinner (LWP 〈 50 g m −2 ). It is suggested that horizontal thermodynamic advection plays a key role modifying the vertical extent of in-cloud mixing and likewise the depth of in-cloud stable layers. Furthermore, longwave atmospheric opacity above the cloud top is generally enhanced during cases with optically thinner clouds. Thermodynamic advection, cloud condensate distribution within the stable layer, and enhanced atmospheric radiation above the cloud are found to introduce a thermodynamic–radiative feedback that potentially modifies the extent of LWP and subsequent in-cloud mixing.
    Type of Medium: Online Resource
    ISSN: 1558-8424 , 1558-8432
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2008
    In:  Journal of Applied Meteorology and Climatology Vol. 47, No. 9 ( 2008-09-01), p. 2405-2422
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 47, No. 9 ( 2008-09-01), p. 2405-2422
    Abstract: Downwelling radiation in six regional models from the Arctic Regional Climate Model Intercomparison (ARCMIP) project is systematically biased negative in comparison with observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment, although the correlations with observations are relatively good. In this paper, links between model errors and the representation of clouds in these models are investigated. Although some modeled cloud properties, such as the cloud water paths, are reasonable in a climatological sense, the temporal correlation of model cloud properties with observations is poor. The vertical distribution of cloud water is distinctly different among the different models; some common features also appear. Most models underestimate the presence of high clouds, and, although the observed preference for low clouds in the Arctic is present in most of the models, the modeled low clouds are too thin and are displaced downward. Practically all models show a preference to locate the lowest cloud base at the lowest model grid point. In some models this happens also to be where the observations show the highest occurrence of the lowest cloud base; it is not possible to determine if this result is just a coincidence. Different factors contribute to model surface radiation errors. For longwave radiation in summer, a negative bias is present both for cloudy and clear conditions, and intermodel differences are smaller when clouds are present. There is a clear relationship between errors in cloud-base temperature and radiation errors. In winter, in contrast, clear-sky cases are modeled reasonably well, but cloudy cases show a very large intermodel scatter with a significant bias in all models. This bias likely results from a complete failure in all of the models to retain liquid water in cold winter clouds. All models overestimate the cloud attenuation of summer solar radiation for thin and intermediate clouds, and some models maintain this behavior also for thick clouds.
    Type of Medium: Online Resource
    ISSN: 1558-8432 , 1558-8424
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2008
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 102, No. 2 ( 2021-02), p. E421-E445
    Abstract: The Chequamegon Heterogeneous Ecosystem Energy-Balance Study Enabled by a High-Density Extensive Array of Detectors 2019 (CHEESEHEAD19) is an ongoing National Science Foundation project based on an intensive field campaign that occurred from June to October 2019. The purpose of the study is to examine how the atmospheric boundary layer (ABL) responds to spatial heterogeneity in surface energy fluxes. One of the main objectives is to test whether lack of energy balance closure measured by eddy covariance (EC) towers is related to mesoscale atmospheric processes. Finally, the project evaluates data-driven methods for scaling surface energy fluxes, with the aim to improve model–data comparison and integration. To address these questions, an extensive suite of ground, tower, profiling, and airborne instrumentation was deployed over a 10 km × 10 km domain of a heterogeneous forest ecosystem in the Chequamegon–Nicolet National Forest in northern Wisconsin, United States, centered on an existing 447-m tower that anchors an AmeriFlux/NOAA supersite (US-PFa/WLEF). The project deployed one of the world’s highest-density networks of above-canopy EC measurements of surface energy fluxes. This tower EC network was coupled with spatial measurements of EC fluxes from aircraft; maps of leaf and canopy properties derived from airborne spectroscopy, ground-based measurements of plant productivity, phenology, and physiology; and atmospheric profiles of wind, water vapor, and temperature using radar, sodar, lidar, microwave radiometers, infrared interferometers, and radiosondes. These observations are being used with large-eddy simulation and scaling experiments to better understand submesoscale processes and improve formulations of subgrid-scale processes in numerical weather and climate models.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Journal of Climate Vol. 32, No. 3 ( 2019-02), p. 769-789
    In: Journal of Climate, American Meteorological Society, Vol. 32, No. 3 ( 2019-02), p. 769-789
    Abstract: During the Arctic Clouds in Summer Experiment (ACSE) in summer 2014 a weeklong period of warm-air advection over melting sea ice, with the formation of a strong surface temperature inversion and dense fog, was observed. Based on an analysis of the surface energy budget, we formulated the hypothesis that, because of the airmass transformation, additional surface heating occurs during warm-air intrusions in a zone near the ice edge. To test this hypothesis, we explore all cases with surface inversions occurring during ACSE and then characterize the inversions in detail. We find that they always occur with advection from the south and are associated with subsidence. Analyzing only inversion cases over sea ice, we find two categories: one with increasing moisture in the inversion and one with constant or decreasing moisture with height. During surface inversions with increasing moisture with height, an extra 10–25 W m −2 of surface heating was observed, compared to cases without surface inversions; the surface turbulent heat flux was the largest single term. Cases with less moisture in the inversion were often cloud free and the extra solar radiation plus the turbulent surface heat flux caused by the inversion was roughly balanced by the loss of net longwave radiation.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2017
    In:  Geophysical Research Letters Vol. 44, No. 2 ( 2017-01-28), p. 1095-1103
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 44, No. 2 ( 2017-01-28), p. 1095-1103
    Abstract: Frequent atmospheric thermodynamic advection during summer results in monthly cooling anomalies via enhanced outgoing longwave to space Atmospheric circulation variability supports cold, middle‐ and high‐level cloud reduction Warmer longwave emitting clouds from lower tropospheric levels able to more effectively radiate to space
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2017
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Wiley ; 2019
    In:  International Journal of Climatology Vol. 39, No. 6 ( 2019-05), p. 2862-2879
    In: International Journal of Climatology, Wiley, Vol. 39, No. 6 ( 2019-05), p. 2862-2879
    Abstract: Horizontal moisture transport has a manifold role in the Arctic climate system as it distributes atmospheric water vapour and thereby shapes the radiative and hydrological conditions. Moisture transport between the Arctic and the mid‐latitudes was examined based on ERA‐Interim reanalysis. The meridional net transport is only a small part of the water vapour exchange between the Arctic and mid‐latitudes and does not give a complete view of temporal and spatial variations in the transport. Especially near the surface, most of the northwards moisture transport is balanced by the southwards transport, and therefore the meridional net moisture transport at 60°–70°N peaks approximately at 100 hPa higher altitude than the northwards and southwards moisture transports. The total moisture transport (sum of absolute northwards and southwards moisture transports) has a much larger seasonal variation than the net transport (mean meridional transport), and the strength of the total transport is related to atmospheric humidity rather than the wind field. Strong individual moisture transport events contribute to a large part of the northwards moisture transport. This is consistent with the result that the net moisture transport is essentially generated by temporal variations of moisture fluxes. The moisture transport due to stationary zonal variation in the mass flux mostly defines the spatial distribution of the meridional moisture transport. The seasonal cycle of the net moisture transport is related to the seasonal cycle of transient eddy moisture transport but inter‐annual variations of the net moisture transport are largely influenced by the stationary eddy moisture transport.
    Type of Medium: Online Resource
    ISSN: 0899-8418 , 1097-0088
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 1491204-1
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2009
    In:  Boundary-Layer Meteorology Vol. 132, No. 3 ( 2009-9), p. 455-474
    In: Boundary-Layer Meteorology, Springer Science and Business Media LLC, Vol. 132, No. 3 ( 2009-9), p. 455-474
    Type of Medium: Online Resource
    ISSN: 0006-8314 , 1573-1472
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2009
    detail.hit.zdb_id: 242879-9
    detail.hit.zdb_id: 1477639-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...