GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2017
    In:  Geophysical Research Letters Vol. 44, No. 13 ( 2017-07-16), p. 7053-7060
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 44, No. 13 ( 2017-07-16), p. 7053-7060
    Abstract: High aerosol concentrations were sometimes observed to be in contact with the boundary layer top in the summertime Arctic during ASCOS Free tropospheric aerosol can be transported to the boundary layer by direct entrainment or by cloud‐mediated activation and regeneration Aerosol properties measured at the surface may not be a good indicator of aerosol properties in the cloud layer
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2017
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 17, No. 11 ( 2017-06-08), p. 6693-6704
    Abstract: Abstract. The Arctic climate is changing; temperature changes in the Arctic are greater than at midlatitudes, and changing atmospheric conditions influence Arctic mixed-phase clouds, which are important for the Arctic surface energy budget. These low-level clouds are frequently observed across the Arctic. They impact the turbulent and radiative heating of the open water, snow, and sea-ice-covered surfaces and influence the boundary layer structure. Therefore the processes that affect mixed-phase cloud life cycles are extremely important, yet relatively poorly understood. In this study, we present sensitivity studies using semi-idealized large eddy simulations (LESs) to identify processes contributing to the dissipation of Arctic mixed-phase clouds. We found that one potential main contributor to the dissipation of an observed Arctic mixed-phase cloud, during the Arctic Summer Cloud Ocean Study (ASCOS) field campaign, was a low cloud droplet number concentration (CDNC) of about 2 cm−3. Introducing a high ice crystal concentration of 10 L−1 also resulted in cloud dissipation, but such high ice crystal concentrations were deemed unlikely for the present case. Sensitivity studies simulating the advection of dry air above the boundary layer inversion, as well as a modest increase in ice crystal concentration of 1 L−1, did not lead to cloud dissipation. As a requirement for small droplet numbers, pristine aerosol conditions in the Arctic environment are therefore considered an important factor determining the lifetime of Arctic mixed-phase clouds.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 15, No. 8 ( 2022-04-25), p. 2479-2502
    Abstract: Abstract. During the Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019 (CHEESEHEAD19) field campaign, held in the summer of 2019 in northern Wisconsin, USA, active and passive ground-based remote sensing instruments were deployed to understand the response of the planetary boundary layer to heterogeneous land surface forcing. These instruments include radar wind profilers, microwave radiometers, atmospheric emitted radiance interferometers, ceilometers, high spectral resolution lidars, Doppler lidars, and collaborative lower-atmospheric mobile profiling systems that combine several of these instruments. In this study, these ground-based remote sensing instruments are used to estimate the height of the daytime planetary boundary layer, and their performance is compared against independent boundary layer depth estimates obtained from radiosondes launched as part of the field campaign. The impact of clouds (in particular boundary layer clouds) on boundary layer depth estimations is also investigated. We found that while all instruments are overall able to provide reasonable boundary layer depth estimates, each of them shows strengths and weaknesses under certain conditions. For example, radar wind profilers perform well during cloud-free conditions, and microwave radiometers and atmospheric emitted radiance interferometers have a very good agreement during all conditions but are limited by the smoothness of the retrieved thermodynamic profiles. The estimates from ceilometers and high spectral resolution lidars can be hindered by the presence of elevated aerosol layers or clouds, and the multi-instrument retrieval from the collaborative lower atmospheric mobile profiling systems can be constricted to a limited height range in low-aerosol conditions.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    In: Monthly Weather Review, American Meteorological Society, Vol. 151, No. 12 ( 2023-12), p. 3063-3087
    Abstract: Doppler-lidar wind-profile measurements at three sites were used to evaluate NWP model errors from two versions of NOAA’s 3-km-grid HRRR model, to see whether updates in the latest version 4 reduced errors when compared against the original version 1. Nested (750-m grid) versions of each were also tested to see how grid spacing affected forecast skill. The measurements were part of the field phase of the Second Wind Forecasting Improvement Project (WFIP2), an 18-month deployment into central Oregon–Washington, a major wind-energy-producing region. This study focuses on errors in simulating marine intrusions, a summertime, 600–800-m-deep, regional sea-breeze flow found to generate large errors. HRRR errors proved to be complex and site dependent. The most prominent error resulted from a premature drop in modeled marine-intrusion wind speeds after local midnight, when lidar-measured winds of greater than 8 m s −1 persisted through the next morning. These large negative errors were offset at low levels by positive errors due to excessive mixing, complicating the interpretation of model “improvement,” such that the updates to the full-scale versions produced mixed results, sometimes enhancing but sometimes degrading model skill. Nesting consistently improved model performance, with version 1’s nest producing the smallest errors overall. HRRR’s ability to represent the stages of sea-breeze forcing was evaluated using radiation budget, surface-energy balance, and near-surface temperature measurements available during WFIP2. The significant site-to-site differences in model error and the complex nature of these errors mean that field-measurement campaigns having dense arrays of profiling sensors are necessary to properly diagnose and characterize model errors, as part of a systematic approach to NWP model improvement. Significance Statement Dramatic increases in NWP model skill will be required over the coming decades. This paper describes the role of major deployments of accurate profiling sensors in achieving that goal and presents an example from the Second Wind Forecast Improvement Program (WFIP2). Wind-profile data from scanning Doppler lidars were used to evaluate two versions of HRRR, the original and an updated version, and nested versions of each. This study focuses on the ability of updated HRRR versions to improve upon predicting a regional sea-breeze flow, which was found to generate large errors by the original HRRR. Updates to the full-scale HRRR versions produced mixed results, but the finer-mesh versions consistently reduced model errors.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2012
    In:  Journal of Geophysical Research: Atmospheres Vol. 117, No. D19 ( 2012-10-16), p. n/a-n/a
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 117, No. D19 ( 2012-10-16), p. n/a-n/a
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2012
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    In: Journal of Climate, American Meteorological Society, Vol. 29, No. 24 ( 2016-12-15), p. 8721-8744
    Abstract: The Arctic Clouds in Summer Experiment (ACSE) was conducted during summer and early autumn 2014, providing a detailed view of the seasonal transition from ice melt into freeze-up. Measurements were taken over both ice-free and ice-covered surfaces near the ice edge, offering insight into the role of the surface state in shaping the atmospheric conditions. The initiation of the autumn freeze-up was related to a change in air mass, rather than to changes in solar radiation alone; the lower atmosphere cooled abruptly, leading to a surface heat loss. During melt season, strong surface inversions persisted over the ice, while elevated inversions were more frequent over open water. These differences disappeared during autumn freeze-up, when elevated inversions persisted over both ice-free and ice-covered conditions. These results are in contrast to previous studies that found a well-mixed boundary layer persisting in summer and an increased frequency of surface-based inversions in autumn, suggesting that knowledge derived from measurements taken within the pan-Arctic area and on the central ice pack does not necessarily apply closer to the ice edge. This study offers an insight into the atmospheric processes that occur during a crucial period of the year; understanding and accurately modeling these processes is essential for the improvement of ice-extent predictions and future Arctic climate projections.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    In: Bulletin of the American Meteorological Society, American Meteorological Society, ( 2023-08-09)
    Abstract: Water is a critical resource that causes significant challenges to inhabitants of the western United States. These challenges are likely to intensify as the result of expanding population and climate-related changes that act to reduce runoff in areas of complex terrain. To better understand the physical processes that drive the transition of mountain precipitation to streamflow, the National Oceanic and Atmospheric Administration has deployed suites of environmental sensors throughout the East River Watershed of Colorado as part of the Study of Precipitation, the Lower Atmosphere, and Surface for Hydrometeorology (SPLASH). This includes surface-based sensors over a network of five different observing sites, airborne platforms, and sophisticated remote sensors to provide detailed information on spatiotemporal variability of key parameters. With a two-year deployment, these sensors offer detailed insight into precipitation, the lower atmosphere, and surface, and support the development of datasets targeting improved prediction of weather and water. Initial datasets have been published and are laying a foundation for improved characterization of physical processes and their interactions driving mountain hydrology, evaluation and improvement of numerical prediction tools, and educational activities. SPLASH observations contain a depth and breadth of information that enables a variety of atmospheric and hydrological science analyses over the coming years that leverage collaborations between national laboratories, academia, and stakeholders, including industry.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Online Resource
    Online Resource
    Stockholm University Press ; 2011
    In:  Tellus B: Chemical and Physical Meteorology Vol. 63, No. 1 ( 2011-01-01), p. 77-
    In: Tellus B: Chemical and Physical Meteorology, Stockholm University Press, Vol. 63, No. 1 ( 2011-01-01), p. 77-
    Type of Medium: Online Resource
    ISSN: 1600-0889 , 0280-6509
    RVK:
    RVK:
    Language: Unknown
    Publisher: Stockholm University Press
    Publication Date: 2011
    detail.hit.zdb_id: 2026992-4
    detail.hit.zdb_id: 246061-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 42, No. 13 ( 2015-07-16), p. 5594-5602
    Abstract: The importance of both large‐scale dynamics and local feedback for sea‐ice melt The location of extra melt near the ice edge, due to the air‐mass transformation The role of clouds, longwave radiation and turbulent heat flux for sea‐ice melt
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2015
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Journal of Applied Meteorology and Climatology Vol. 58, No. 8 ( 2019-08), p. 1867-1886
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 58, No. 8 ( 2019-08), p. 1867-1886
    Abstract: Measurements from spaceborne sensors have the unique capacity to fill spatial and temporal gaps in ground-based atmospheric observing systems, especially over the Arctic, where long-term observing stations are limited to pan-Arctic landmasses and infrequent field campaigns. The AIRS level 3 (L3) daily averaged thermodynamic profile product is widely used for process understanding across the sparsely observed Arctic atmosphere. However, detailed investigations into the accuracy of the AIRS L3 thermodynamic profiles product using in situ observations over the high-latitude Arctic are lacking. To address this void, we compiled a wealth of radiosounding profiles from long-term Arctic land stations and included soundings from intensive icebreaker-based field campaigns. These are used to evaluate daily mean thermodynamic profiles from the AIRS L3 product so that the community can understand to what extent such data records can be applied in scientific studies. Results indicate that, while the mid- to upper-troposphere temperature and specific humidity are captured relatively well by AIRS, the lower troposphere is susceptible to specific seasonal, and even monthly, biases. These differences have a critical influence on the lower-tropospheric stability structure. The relatively coarse vertical resolution of the AIRS L3 product, together with infrared radiation through persistent low Arctic cloud layers, leads to artificial thermodynamic structures that fail to accurately represent the lower Arctic atmosphere. These thermodynamic errors are likely to introduce artificial errors in the boundary layer structure and analysis of associated physical processes.
    Type of Medium: Online Resource
    ISSN: 1558-8424 , 1558-8432
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...