GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of Applied Meteorology and Climatology Vol. 53, No. 12 ( 2014-12), p. 2775-2789
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 53, No. 12 ( 2014-12), p. 2775-2789
    Abstract: Observations of cloud properties and thermodynamics from two Arctic locations, Barrow, Alaska, and Surface Heat Budget of the Arctic (SHEBA), are examined. A comparison of in-cloud thermodynamic mixing characteristics for low-level, single-layer clouds from nearly a decade of data at Barrow and one full annual cycle over the sea ice at SHEBA is performed. These cloud types occur relatively frequently, evident in 27%–30% of all cloudy cases. To understand the role of liquid water path (LWP), or lack thereof, on static in-cloud mixing, cloud layers are separated into optically thin and optically thick LWP subclasses. Clouds with larger LWPs tend to have a deeper in-cloud mixed layer relative to optically thinner clouds. However, both cloud LWP subclasses are frequently characterized by an in-cloud stable layer above the mixed layer top. The depth of the stable layer generally correlates with an increased temperature gradient across the layer. This layer often contains a specific humidity inversion, but it is more frequently present when cloud LWP is optically thinner (LWP 〈 50 g m −2 ). It is suggested that horizontal thermodynamic advection plays a key role modifying the vertical extent of in-cloud mixing and likewise the depth of in-cloud stable layers. Furthermore, longwave atmospheric opacity above the cloud top is generally enhanced during cases with optically thinner clouds. Thermodynamic advection, cloud condensate distribution within the stable layer, and enhanced atmospheric radiation above the cloud are found to introduce a thermodynamic–radiative feedback that potentially modifies the extent of LWP and subsequent in-cloud mixing.
    Type of Medium: Online Resource
    ISSN: 1558-8424 , 1558-8432
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2008
    In:  Journal of Applied Meteorology and Climatology Vol. 47, No. 9 ( 2008-09-01), p. 2405-2422
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 47, No. 9 ( 2008-09-01), p. 2405-2422
    Abstract: Downwelling radiation in six regional models from the Arctic Regional Climate Model Intercomparison (ARCMIP) project is systematically biased negative in comparison with observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment, although the correlations with observations are relatively good. In this paper, links between model errors and the representation of clouds in these models are investigated. Although some modeled cloud properties, such as the cloud water paths, are reasonable in a climatological sense, the temporal correlation of model cloud properties with observations is poor. The vertical distribution of cloud water is distinctly different among the different models; some common features also appear. Most models underestimate the presence of high clouds, and, although the observed preference for low clouds in the Arctic is present in most of the models, the modeled low clouds are too thin and are displaced downward. Practically all models show a preference to locate the lowest cloud base at the lowest model grid point. In some models this happens also to be where the observations show the highest occurrence of the lowest cloud base; it is not possible to determine if this result is just a coincidence. Different factors contribute to model surface radiation errors. For longwave radiation in summer, a negative bias is present both for cloudy and clear conditions, and intermodel differences are smaller when clouds are present. There is a clear relationship between errors in cloud-base temperature and radiation errors. In winter, in contrast, clear-sky cases are modeled reasonably well, but cloudy cases show a very large intermodel scatter with a significant bias in all models. This bias likely results from a complete failure in all of the models to retain liquid water in cold winter clouds. All models overestimate the cloud attenuation of summer solar radiation for thin and intermediate clouds, and some models maintain this behavior also for thick clouds.
    Type of Medium: Online Resource
    ISSN: 1558-8432 , 1558-8424
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2008
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Journal of Climate Vol. 32, No. 3 ( 2019-02), p. 769-789
    In: Journal of Climate, American Meteorological Society, Vol. 32, No. 3 ( 2019-02), p. 769-789
    Abstract: During the Arctic Clouds in Summer Experiment (ACSE) in summer 2014 a weeklong period of warm-air advection over melting sea ice, with the formation of a strong surface temperature inversion and dense fog, was observed. Based on an analysis of the surface energy budget, we formulated the hypothesis that, because of the airmass transformation, additional surface heating occurs during warm-air intrusions in a zone near the ice edge. To test this hypothesis, we explore all cases with surface inversions occurring during ACSE and then characterize the inversions in detail. We find that they always occur with advection from the south and are associated with subsidence. Analyzing only inversion cases over sea ice, we find two categories: one with increasing moisture in the inversion and one with constant or decreasing moisture with height. During surface inversions with increasing moisture with height, an extra 10–25 W m −2 of surface heating was observed, compared to cases without surface inversions; the surface turbulent heat flux was the largest single term. Cases with less moisture in the inversion were often cloud free and the extra solar radiation plus the turbulent surface heat flux caused by the inversion was roughly balanced by the loss of net longwave radiation.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Climate, American Meteorological Society, Vol. 29, No. 24 ( 2016-12-15), p. 8721-8744
    Abstract: The Arctic Clouds in Summer Experiment (ACSE) was conducted during summer and early autumn 2014, providing a detailed view of the seasonal transition from ice melt into freeze-up. Measurements were taken over both ice-free and ice-covered surfaces near the ice edge, offering insight into the role of the surface state in shaping the atmospheric conditions. The initiation of the autumn freeze-up was related to a change in air mass, rather than to changes in solar radiation alone; the lower atmosphere cooled abruptly, leading to a surface heat loss. During melt season, strong surface inversions persisted over the ice, while elevated inversions were more frequent over open water. These differences disappeared during autumn freeze-up, when elevated inversions persisted over both ice-free and ice-covered conditions. These results are in contrast to previous studies that found a well-mixed boundary layer persisting in summer and an increased frequency of surface-based inversions in autumn, suggesting that knowledge derived from measurements taken within the pan-Arctic area and on the central ice pack does not necessarily apply closer to the ice edge. This study offers an insight into the atmospheric processes that occur during a crucial period of the year; understanding and accurately modeling these processes is essential for the improvement of ice-extent predictions and future Arctic climate projections.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Stockholm University Press ; 2011
    In:  Tellus B: Chemical and Physical Meteorology Vol. 63, No. 1 ( 2011-01-01), p. 77-
    In: Tellus B: Chemical and Physical Meteorology, Stockholm University Press, Vol. 63, No. 1 ( 2011-01-01), p. 77-
    Type of Medium: Online Resource
    ISSN: 1600-0889 , 0280-6509
    RVK:
    RVK:
    Language: Unknown
    Publisher: Stockholm University Press
    Publication Date: 2011
    detail.hit.zdb_id: 2026992-4
    detail.hit.zdb_id: 246061-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Journal of Applied Meteorology and Climatology Vol. 58, No. 8 ( 2019-08), p. 1867-1886
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 58, No. 8 ( 2019-08), p. 1867-1886
    Abstract: Measurements from spaceborne sensors have the unique capacity to fill spatial and temporal gaps in ground-based atmospheric observing systems, especially over the Arctic, where long-term observing stations are limited to pan-Arctic landmasses and infrequent field campaigns. The AIRS level 3 (L3) daily averaged thermodynamic profile product is widely used for process understanding across the sparsely observed Arctic atmosphere. However, detailed investigations into the accuracy of the AIRS L3 thermodynamic profiles product using in situ observations over the high-latitude Arctic are lacking. To address this void, we compiled a wealth of radiosounding profiles from long-term Arctic land stations and included soundings from intensive icebreaker-based field campaigns. These are used to evaluate daily mean thermodynamic profiles from the AIRS L3 product so that the community can understand to what extent such data records can be applied in scientific studies. Results indicate that, while the mid- to upper-troposphere temperature and specific humidity are captured relatively well by AIRS, the lower troposphere is susceptible to specific seasonal, and even monthly, biases. These differences have a critical influence on the lower-tropospheric stability structure. The relatively coarse vertical resolution of the AIRS L3 product, together with infrared radiation through persistent low Arctic cloud layers, leads to artificial thermodynamic structures that fail to accurately represent the lower Arctic atmosphere. These thermodynamic errors are likely to introduce artificial errors in the boundary layer structure and analysis of associated physical processes.
    Type of Medium: Online Resource
    ISSN: 1558-8424 , 1558-8432
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2018
    In:  Journal of Climate Vol. 31, No. 11 ( 2018-06-01), p. 4225-4240
    In: Journal of Climate, American Meteorological Society, Vol. 31, No. 11 ( 2018-06-01), p. 4225-4240
    Abstract: Springtime atmospheric preconditioning of Arctic sea ice for enhanced or buffered sea ice melt during the subsequent melt year has received considerable research focus. Studies have identified enhanced poleward atmospheric transport of moisture and heat during spring, leading to increased emission of longwave radiation to the surface. Simultaneously, these studies ruled out the role of shortwave radiation as an effective preconditioning mechanism because of relatively weak incident solar radiation, high surface albedo from sea ice and snow, and increased clouds during spring. These conclusions are derived primarily from atmospheric reanalysis, which may not always accurately represent the Arctic climate system. Here, top-of-atmosphere shortwave radiation observations from a state-of-the-art satellite sensor are compared with ERA-Interim reanalysis to examine similarities and differences in the springtime absorbed shortwave radiation (ASR) over the Arctic Ocean. Distinct biases in regional location and absolute magnitude of ASR anomalies are found between satellite-based measurements and reanalysis. Observations indicate separability between ASR anomalies in spring corresponding to anomalously low and high ice extents in September; the reanalysis fails to capture the full extent of this separability. The causes for the difference in ASR anomalies between observations and reanalysis are considered in terms of the variability in surface albedo and cloud presence. Additionally, biases in reanalysis cloud water during spring are presented and are considered for their impact on overestimating spring downwelling longwave anomalies. Taken together, shortwave radiation should not be overlooked as a contributing mechanism to springtime Arctic atmospheric preconditioning.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2018
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2012
    In:  Journal of Climate Vol. 25, No. 7 ( 2012-04-01), p. 2374-2393
    In: Journal of Climate, American Meteorological Society, Vol. 25, No. 7 ( 2012-04-01), p. 2374-2393
    Abstract: Cloud and thermodynamic characteristics from three Arctic observation sites are investigated to understand the collocation between low-level clouds and temperature inversions. A regime where cloud top was 100–200 m above the inversion base [cloud inside inversion (CII)] was frequently observed at central Arctic Ocean sites, while observations from Barrow, Alaska, indicate that cloud tops were more frequently constrained to inversion base height [cloud capped by inversion (CCI)] . Cloud base and top heights were lower, and temperature inversions were also stronger and deeper, during CII cases. Both cloud regimes were often decoupled from the surface except for CCI over Barrow. In-cloud lapse rates differ and suggest increased cloud-mixing potential for CII cases. Specific humidity inversions were collocated with temperature inversions for more than 60% of the CCI and more than 85% of the CII regimes. Horizontal advection of heat and moisture is hypothesized as an important process controlling thermodynamic structure and efficiency of cloud-generated motions. The portion of CII clouds above the inversion contains cloud radar signatures consistent with cloud droplets. The authors test the longwave radiative impact of cloud liquid above the inversion through hypothetical liquid water distributions. Optically thin CII clouds alter the effective cloud emission temperature and can lead to an increase in surface flux on the order of 1.5 W m−2 relative to the same cloud but whose top does not extend above the inversion base. The top of atmosphere impact is even larger, increasing outgoing longwave radiation up to 10 W m−2. These results suggest a potentially significant longwave radiative forcing via simple liquid redistributions for a distinctly dominant cloud regime over sea ice.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2012
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Journal of Applied Meteorology and Climatology Vol. 60, No. 4 ( 2021-04), p. 477-491
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 60, No. 4 ( 2021-04), p. 477-491
    Abstract: Various methods have been developed to characterize cloud type, otherwise referred to as cloud regime. These include manual sky observations, combining radiative and cloud vertical properties observed from satellite, surface-based remote sensing, and digital processing of sky imagers. While each method has inherent advantages and disadvantages, none of these cloud-typing methods actually includes measurements of surface shortwave or longwave radiative fluxes. Here, a method that relies upon detailed, surface-based radiation and cloud measurements and derived data products to train a random-forest machine-learning cloud classification model is introduced. Measurements from five years of data from the ARM Southern Great Plains site were compiled to train and independently evaluate the model classification performance. A cloud-type accuracy of approximately 80% using the random-forest classifier reveals that the model is well suited to predict climatological cloud properties. Furthermore, an analysis of the cloud-type misclassifications is performed. While physical cloud types may be misreported, the shortwave radiative signatures are similar between misclassified cloud types. From this, we assert that the cloud-regime model has the capacity to successfully differentiate clouds with comparable cloud–radiative interactions. Therefore, we conclude that the model can provide useful cloud-property information for fundamental cloud studies, inform renewable energy studies, and be a tool for numerical model evaluation and parameterization improvement, among many other applications.
    Type of Medium: Online Resource
    ISSN: 1558-8424 , 1558-8432
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Wiley ; 2016
    In:  Quarterly Journal of the Royal Meteorological Society Vol. 142, No. 694 ( 2016-01), p. 387-400
    In: Quarterly Journal of the Royal Meteorological Society, Wiley, Vol. 142, No. 694 ( 2016-01), p. 387-400
    Abstract: Mixed‐phase clouds are an integral part of the Arctic climate system, for precipitation and for their interactions with radiation and thermodynamics. Mixed‐phase processes are often poorly represented in global models and many use an empirically based diagnostic partition between the liquid and ice phases that is dependent solely on temperature. However, increasingly more complex microphysical parametrizations are being implemented allowing a more physical representation of mixed‐phase clouds. This study uses in situ observations from the Arctic Summer Cloud Ocean Study ( ASCOS ) field campaign in the central Arctic to assess the impact of a change from a diagnostic to a prognostic parametrization of mixed‐phase clouds and increased vertical resolution in the European Centre for Medium‐Range Weather Forecasts ( ECMWF ) Integrated Forecast System ( IFS ). The newer cloud scheme improves the representation of the vertical structure of mixed‐phase clouds, with supercooled liquid water at cloud top and ice precipitating below, improved further with higher vertical resolution. Increased supercooled liquid water and decreased ice content are both in closer agreement with observations. However, these changes do not result in any substantial improvement in surface radiation, and a warm and moist bias in the lowest part of the atmosphere remains. Both schemes also fail to capture the transitions from overcast to cloud‐free conditions. Moreover, whereas the observed cloud layer is frequently decoupled from the surface, the modelled clouds remain coupled to the surface most of the time. The changes implemented to the cloud scheme are an important step forward in improving the representation of Arctic clouds, but improvements in other aspects such as boundary‐layer turbulence, cloud radiative properties, sensitivity to low aerosol concentrations and representation of the sea‐ice surface may also need to be addressed.
    Type of Medium: Online Resource
    ISSN: 0035-9009 , 1477-870X
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 3142-2
    detail.hit.zdb_id: 2089168-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...