GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Oncogene, Springer Science and Business Media LLC, Vol. 39, No. 4 ( 2020-01-23), p. 833-848
    Type of Medium: Online Resource
    ISSN: 0950-9232 , 1476-5594
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2008404-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 39, No. 15_suppl ( 2021-05-20), p. 6592-6592
    Abstract: 6592 Background: Clinical trial phenotyping is the process of extracting clinical features and patient characteristics from eligibility criteria. Phenotyping is a crucial step that precedes automated cohort identification from patient electronic health records (EHRs) against trial criteria. We establish a clinical trial phenotyping pipeline to transform clinical trial eligibility criteria into computable criteria and enable high throughput cohort selection in EHRs. Methods: Formalized clinical trial criteria attributes were acquired from a natural-language processing (NLP)-assisted approach. We implemented a clinical trial phenotyping pipeline that included three components: First, a rule-based knowledge engineering component was introduced to annotate the trial attributes into a computable and customizable granularity from EHRs. The second component involved normalizing annotated attributes using standard terminologies and pre-defined reference tables. Third, a knowledge base of computable criteria attributes was built to match patients to clinical trials. We evaluated the pipeline performance by independent manual review. The inter-rater agreement of the annotation was measured on a random sample of the knowledge base. The accuracy of the pipeline was evaluated on a subset of randomly selected matched patients for a subset of randomly selected attributes. Results: Our pipeline phenotyped 2954 clinical trials from five cancer types including Non-Small Cell Lung Cancer, Small Cell Lung Cancer, Prostate Cancer, Breast Cancer, and Multiple Myeloma. We built a knowledge base of 256 computable attributes that included comorbidities, comorbidity-related treatment, previous lines of therapy, laboratory tests, and performance such as ECOG and Karnofsky score. Among 256 attributes, 132 attributes were encoded using standard terminologies and 124 attributes were normalized to customized concepts. The inter-rater agreement of the annotation measured by Cohen’s Kappa coefficient was 0.83. We applied the knowledge base to our EHRs and efficiently identified 33258 potential subjects for cancer clinical trials. Our evaluation on the patient matching indicated the F1 score was 0.94. Conclusions: We established a clinical trial phenotyping pipeline and built a knowledge base of computable criteria attributes that enabled efficient screening of EHRs for patients meeting clinical trial eligibility criteria, providing an automated way to efficiently and accurately identify clinical trial cohorts. The application of this knowledge base to patient matching from EHR data across different institutes demonstrates its generalization capability. Taken together, this knowledge base will be particularly valuable in computer-assisted clinical trial subject selection and clinical trial protocol design in cancer studies based on real-world evidence.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2021
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society of Clinical Oncology (ASCO) ; 2022
    In:  Journal of Clinical Oncology Vol. 40, No. 16_suppl ( 2022-06-01), p. e13575-e13575
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 40, No. 16_suppl ( 2022-06-01), p. e13575-e13575
    Abstract: e13575 Background: Homologous recombination deficiency (HRD) can be resulted from dysfunction of BRCA and is associated with sensitivity to platinum, PARP inhibitor and other DNA-damaging drugs. The results from a neoadjuvant trial showed that pathological complete response (pCR) was not significantly higher with cisplatin than with doxorubicin-cyclophosphamide in BRCA1/2-mutated breast cancers (BC). It suggests that BC with HRD might benefit from anthracycline-containing regiment. There are many commercial HRD detection assays, including the FoundationFocus CDx BRCA LOH and myChoice CDx, but there is still no uniform standard in China. Methods: A total of 96 in-house BC samples and 6 HRD positive standard cells (Cat No. CBP90023) were analyzed by whole-genome sequencing (WGS). Besides, 122 BCs from the TCGA database were down-sampled to ̃1X WGS. We constructed a new algorithm for HRD score based on WGS at low coverage as input data to estimate large-scale copy number alteration (LCNA) events on the genome. The sensitivity and specificity were compared between our algorithm and the ShallowHRD. A clinical cohort of 50 BCs (15 cases carrying BRCA mutation) was used to assess the association between HRD status and anthracyclines-containing neoadjuvant treatment outcomes. Results: A 100kb-window was defined as the optimal size by using 41 in-house cases and the TCGA dataset. The threshold of HRD was determined as the number of 10 LCNAs by using 55 in-house BCs with BRCA mutation, with the goal of achieving 95% sensitivity. The sensitivity and specificity of our algorithm were both 100%, while those of the ShallowHRD were 40% and 100%, respectively, by testing standard samples with positive HRD. Meanwhile, similar results were also observed that the sensitivity of our algorithm was far superior to ShallowHRD (87% vs 13%) in the clinical cohort. The association between HRD status and BRCA mutations was compared between our algorithm and the ShallowHRD by 120 BC WGS samples (20 cases carrying BRCA mutation) from the TCGA database. The results showed that BRCA status was significantly associated with HRD status by our algorithm and ShallowHRD (P = 0.00838 and P = 0.00284, respectively). However, our algorithm had a higher positive concordance rate than the ShallowHRD algorithm (70% vs 60%). In the clinical cohort of neoadjuvant treatment, HRD group was more likely to respond to anthracycline-containing chemotherapy than non-HRD group, with outcomes of pCR (OR = 9.5, 95% CI: 1.11–81.5, p = 0.04) and residual cancer burden score of 0 or 1 (RCB0/1) (OR = 10.29, 95% CI: 2.02–52.36, p = 0.005). Among 35 patients lacking BRCA mutations, HRD group tended to have RCB0/1 responses compared to non-HRD group (OR = 6.0, 95% CI: 1.00–35.91, p = 0.05). Conclusions: Here, we developed a new stable algorithm for HRD score. It’s a promising assay for clinical application to predict sensitivity of DNA-damaging drugs.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2022
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 39, No. 15_suppl ( 2021-05-20), p. e19512-e19512
    Abstract: e19512 Background: Targeted therapy is an important treatment for chronic lymphocytic leukemia (CLL). However, optimal strategies for deploying small molecule inhibitors or antibody therapies in the real world are not well understood, largely due to a lack of outcomes data. We implemented a novel temporal phenotyping algorithm pipeline to derive lines of therapy (LOT) and disease progression in CLL patients. Here, the CLL treatment pattern and time to the next treatment (TTNT) were analyzed in real-world data (RWD) using patient electronic health records. Methods: We identified a CLL cohort with LOT from the Mount Sinai Data Warehouse (2003-2020). Each LOT consisted of either a single agent or combinations defined by NCCN CLL guidelines. We developed a natural language processing (NLP)-based temporal phenotyping approach to automatically identify the number of lines and therapeutic regimens. The sequence of treatment and time interval for each patient were derived from the systematic treatment data. Time to event analysis and multivariate (i.e., age, gender, race, other treatment patterns) Cox proportional hazard (CoxPH) models were used to analyze the patterns and predictors of TTNT. Results: Four hundred eleven CLL patients received 1 to 7 LOTs. Ibrutinib was the predominant 1 st LOT (40.8% of patients) followed by anti-CD20-based antibody therapies and chemotherapy in 30.6 and 19.2% of patients, respectively, followed by Acalabrutinib, Venetoclax, and Idelalisib in 3.4, 2.7, and 0.7% of patients, respectively (Table 1). The 2 nd to 5 th LOT showed the same or similar trends. We next analyzed the TTNT in the 1 st line of each therapeutic class. Acalabrutinib resulted in a longer median TTNT than Ibrutinib. Both Acalabrutinib and Ibrutinib showed longer TTNT compared to Venetoclax (median TTNTs were 742 and 598 vs. 373 days: HR = 0.23, p=0.015 and HR = 0.48, p=0.03, respectively). In addition, patients with age equal to or older than 65 showed longer TNNT (HR=0.16, p=0.016). Conclusions: Our result shows the potential of RWD usage in clinical decision making as real-world evidence reported here is consistent with results derived from clinical trial data. Linking this study to genetic data and other covariates affecting treatment outcomes may provide additional insights into the optimal sequences of the targeted therapies in CLL. Table 1: Therapeutic class and patient numbers (%) in each line.[Table: see text]
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2021
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Human Molecular Genetics, Oxford University Press (OUP), Vol. 31, No. 2 ( 2021-12-27), p. 219-231
    Abstract: Sperm fibrous sheath (FS) is closely related to sperm maturation, capacitation and motility, and A-kinase anchor protein 4 (AKAP4) is the most abundant protein in sperm FS. Previous studies found incomplete sperm FSs and abnormal flagella in Akap4 knockout mice. Meanwhile, it was reported that the partial deletion in AKAP4 is highly relevant to the dysplasia of the FS in an infertile man, and so far, there is no report about male infertility caused by hemizygous AKAP4 variant. Furthermore, the specific mechanisms of how the variant is relevant to the phenotype remain elusive. In this study, we investigated three multiple morphological abnormalities of the sperm flagella-affected men from three independent families (including one consanguine family) carried hemizygous c.C1285T variant in AKAP4. The patients carried this variant, which showed dysplastic sperm FS, and the protein expression of AKAP4 was decreased in flagella, which was further confirmed in HEK-293T cells in vitro. In addition, the co-localization and interaction between AKAP4 and glutamine-rich protein 2 (QRICH2) on the molecular level were identified by immunofluorescence and co-immunoprecipitation (CO-IP). The hemizygous c.1285C  & gt; T variant in AKAP4 induced decreased protein expression of QRICH2 in spermatozoa. These results suggested that the normal expression of AKAP4 is required for maintaining the expression of QRICH2 and the decreased protein expression of AKAP4 and QRICH2,as well as the interaction between them induced by the hemizygous variant of AKAP4 caused dysplastic fibrous sheath, which eventually led to reduced sperm motility and male infertility.
    Type of Medium: Online Resource
    ISSN: 0964-6906 , 1460-2083
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1474816-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Infectious Diseases, Oxford University Press (OUP), Vol. 215, No. 1 ( 2017-01-01), p. 56-63
    Type of Medium: Online Resource
    ISSN: 0022-1899 , 1537-6613
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2017
    detail.hit.zdb_id: 1473843-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cell, Elsevier BV, Vol. 185, No. 6 ( 2022-03), p. 949-966.e19
    Type of Medium: Online Resource
    ISSN: 0092-8674
    RVK:
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 187009-9
    detail.hit.zdb_id: 2001951-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 39, No. 15_suppl ( 2021-05-20), p. e18747-e18747
    Abstract: e18747 Background: Accurate longitudinal cancer treatments are vital for establishing primary endpoints such as outcome as well as for the investigation of adverse events. However, many longitudinal therapeutic regimens are not well captured in structured electronic health records (EHRs). Thus, their recognition in unstructured data such as clinical notes is critical to gain an accurate description of the real-world patient treatment journey. Here, we demonstrate a scalable approach to extract high-quality longitudinal cancer treatments from lung cancer patients' clinical notes using a Bidirectional Long Short Term Memory (BiLSTM) and Conditional Random Fields (CRF) based natural language processing (NLP) pipeline. Methods: The lung cancer (LC) cohort of 4,698 patients was curated from the Mount Sinai Healthcare system (2003-2020). Two domain experts developed a structured framework of entities and semantics that captured treatment and its temporality. The framework included therapy type (chemotherapy, targeted therapy, immunotherapy, etc.), status (on, off, hold, planned, etc.) and temporal reasoning entities and relations (admin_date, duration, etc.) We pre-annotated 149 FDA-approved cancer drugs and longitudinal timelines of treatment on the training corpus. A NLP pipeline was implemented with BiLSTM-CRF-based deep learning models to train and then apply the resulting models to the clinical notes of LC cohort. A postprocessor was developed to subsequently post-coordinate and refine the output. We performed both cross-evaluation and independent evaluation to assess the pipeline performance. Results: We applied the NLP pipeline to the 853,755 clinical notes, and identified 1,155 distinct entities for 194 cancer generic drugs, including 74 chemotherapy drugs, 21 immunotherapy drugs, and 99 targeted therapy drugs. We identified chemotherapy, immunotherapy, or targeted therapy data for 3,509 patients in the LC cohort from the clinical notes. Compared to only 2,395 patients with cancer treatments in structured EHR, this pipeline identified cancer treatments from notes for additional 2,303 patients who did not have any available cancer treatment data in the structured EHR. Our evaluation schema indicates that the longitudinal cancer drug recognition pipeline delivers strong performance (named entity recognization for drugs and temporal: F1 = 95%; drug-temporal relation recognition: F1 = 90%). Conclusions: We developed a high-performance BiLSTM-CRF based NLP pipeline to recognize longitudinal cancer treatments. The pipeline recovers and encodes as twice as many patients with cancer treatments compared with structured EHR. Our study indicates deep NLP with temporal reasoning could substantially accelerate the extraction of treatment profiles at scale. The pipeline is adjustable and can be applied across different cancers.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2021
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...