GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (2)
  • Biology  (2)
  • XA 53770  (2)
Material
  • Online Resource  (2)
Publisher
Language
Years
Subjects(RVK)
RVK
  • 1
    Online Resource
    Online Resource
    Microbiology Society ; 2022
    In:  Journal of General Virology Vol. 103, No. 1 ( 2022-01-21)
    In: Journal of General Virology, Microbiology Society, Vol. 103, No. 1 ( 2022-01-21)
    Abstract: Borna disease virus 1 (BoDV-1) is a highly neurotropic RNA virus which was recently demonstrated to cause deadly human encephalitis. Viruses can modulate microRNA expression, in turn modulating cellular immune responses and regulating viral replication. A previous study indicated that BoDV-1 infection down-regulated the expression of miR-505 in rats. However, the underlying mechanism of miR-505 during BoDV-1 infection remains unknown. In this study, we found that miR-505 can inhibit autophagy activation by down-regulating the expression of its target gene HMGB1, and ultimately inhibit the replication of BoDV-1. Specifically, we found that the expression of miR-505 was significantly down-regulated in rat primary neurons stably infected with BoDV-1. Overexpression of miR-505 can inhibit the replication of BoDV-1 in cells. Bioinformatics analysis and dual luciferase reporter gene detection confirmed that during BoDV-1 infection, the high-mobility group protein B1 (HMGB1) that mediates autophagy is the direct target gene of miR-505. The expression of HMGB1 was up-regulated after BoDV-1 infection, and overexpression of miR-505 could inhibit the expression of HMGB1. Autophagy-related detection found that after infection with BoDV-1, the expression of autophagy-related proteins and autophagy-related marker LC3 in neuronal cells was significantly up-regulated. Autophagy flow experiments and transmission electron microscopy also further confirmed that BoDV-1 infection activated HMGB1-mediated autophagy. Further regulating the expression of miR-505 found that overexpression of miR-505 significantly inhibited HMGB1-mediated autophagy. The discovery of this mechanism may provide new ideas and directions for the prevention and treatment of BoDV-1 infection in the future.
    Type of Medium: Online Resource
    ISSN: 0022-1317 , 1465-2099
    RVK:
    RVK:
    Language: English
    Publisher: Microbiology Society
    Publication Date: 2022
    detail.hit.zdb_id: 2007065-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of General Virology, Microbiology Society, Vol. 103, No. 12 ( 2022-12-15)
    Abstract: Borna disease virus 1 (BoDV-1) is a highly neurotropic RNA virus that can establish persistent infection in the central nervous system and cause cognitive dysfunction in neonatally infected rats. However, the mechanisms that lead to this cognitive impairment remain unclear. DNA double-strand breaks (DSBs) and their repair are associated with brain development and cognition. If DNA repair in the brain is reduced or delayed and DNA damage accumulates, abnormal cognitive function may result. We generated a rat model of BoDV-1 infection during the neonatal period and assessed behavioural changes using the open field test and Morris water maze. The levels of DSBs were determined by immunofluorescence and comet assays. Western blotting assessed proteins associated with DNA repair pathways. The results showed that BoDV-1 downregulated the ATR/Chk1 signalling pathway in the brain, impairing DNA damage repair and increasing the number of DSBs, which ultimately leads to cognitive dysfunction. Our findings suggest a molecular mechanism by which BoDV-1 interferes with DNA damage repair to cause learning and memory impairment. This provides a theoretical basis for elucidating BoDV-1-induced neurodevelopmental impairment.
    Type of Medium: Online Resource
    ISSN: 0022-1317 , 1465-2099
    RVK:
    RVK:
    Language: English
    Publisher: Microbiology Society
    Publication Date: 2022
    detail.hit.zdb_id: 2007065-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...