GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (95)
  • Medicine  (95)
  • XA 10000  (95)
  • XA 33000  (95)
Material
  • Online Resource  (95)
Language
Subjects(RVK)
  • Medicine  (95)
RVK
  • XA 10000  (95)
  • XA 33000  (95)
  • 1
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 5247-5247
    Abstract: The leukemogenic AML1-ETO fusion protein is produced by the t(8;21) translocation, which is one of the most common chromosomal abnormalities in acute myeloid leukemia (AML). In leukemic cells, AML1-ETO resides in and functions through a stable protein complex, AETFC, that contains multiple transcription factors and cofactors. Among these AETFC components, E2A (also known as TCF3) and HEB (also known as TCF12), two members of the ubiquitously expressed E proteins, directly interact with AML1-ETO, confer new DNA (E-box) binding capacity to AETFC, and are functionally essential for leukemogenesis. However, we find that the third E protein, E2-2 (also known as TCF4), is specifically silenced in AML1-ETO-expressing leukemic cells, suggesting E2-2 as a negative factor of leukemogenesis. Indeed, ectopic expression of E2-2 selectively inhibits the growth of AML1-ETO-expressing leukemic cells, and this inhibition requires the basic helix-loop-helix (bHLH) DNA-binding domain of E2-2. Gene expression profiling and ChIP-seq analysis reveal that, despite some overlap, the three E proteins differentially regulate many target genes. In particular, consistent with the fact that E2-2 is a critical transcription factor in dendritic cell (DC) development, our studies show that E2-2 both redistributes AETFC to, and activates, some genes associated with DC differentiation, and that restoration of E2-2 triggers a partial differentiation of the AML1-ETO-expressing leukemic cells into the DC lineage. Meanwhile, E2-2, but not E2A or HEB, represses MYC target genes, which may also contribute to leukemic cell differentiation and apoptosis. In AML patients, the expression of E2-2 is relatively lower in the t(8;21) subtype, and an E2-2 target gene, THPO, is identified as a potential predictor of relapse. In a mouse model of human t(8;21) leukemia, E2-2 suppression accelerates the development of leukemia. Taken together, these results reveal that, in contrast to HEB and E2A, which facilitate AML1-ETO-mediated leukemogenesis, E2-2 compromises the function of AETFC and negatively regulates leukemogenesis. The three E proteins thus define a molecular heterogeneity of AETFC, which merits further study in different t(8;21) AML patients, as well as in its potential regulation of cellular heterogeneity of AML. These studies should improve our understanding of the precise mechanism of leukemogenesis and assist development of diagnostic and therapeutic strategies. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 3292-3293
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 5734-5734
    Abstract: Introduction: Hepatitis E virus (HEV) is increasingly found to cause hepatitis in allogeneic hematopoietic stem cell transplantation (HSCT) patients. However, little is known about HEV infection in patients treated with haploidentical HSCT (haplo-HSCT). Here, we retrospectively evaluate the incidence and clinical course of HEV infection in haplo-HSCT patients. Methods: From January 2014 to July 2017, 177 patients with unexplained elevated transaminases after receiving haplo-HSCT at Peking University Institute of Haematology were screened for HEV infection using HEV serology. HEV RNA were performed when HEV-IgG and/or IgM antibodies were positive. Results: Acute HEV infection was identified in seven of these patients (3.9%), none of whom had developed a chronic HEV infection. The median time from haplo-HSCT to HEV infection was 17.5 (range, 6-55) months. Median peak alanine transaminase during HEV infection was 716 (range, 164-1763) U/L. In 7 cases, HEV infection was confirmed by the presentation of anti-HEV IgM + anti-HEV IgG (rising) (n=5) or HEV-RNA + anti-HEV IgM + anti-HEV IgG (n=2). None patients died of HEV infection directly. Two patients with HEV infection died showing signs of ongoing hepatitis and the median duration of HEV infection was 2.7 months. Five patients cleared HEV and the median duration of HEV infection was 1.5 (range, 1.0-5.7) months. Conclusions: In conclusion, HEV infection is a rare but serious complication after haplo-HSCT. We recommend screening of HEV infection in haplo-HSCT. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 109, No. 8 ( 2007-04-15), p. 3441-3450
    Abstract: Studies have documented the potential antitumor activities of oridonin, a compound extracted from medicinal herbs. However, whether oridonin can be used in the selected setting of hematology/oncology remains obscure. Here, we reported that oridonin induced apoptosis of t(8;21) acute myeloid leukemic (AML) cells. Intriguingly, the t(8;21) product AML1-ETO (AE) fusion protein, which plays a critical role in leukemogenesis, was degraded with generation of a catabolic fragment, while the expression pattern of AE target genes investigated could be reprogrammed. The ectopic expression of AE enhanced the apoptotic effect of oridonin in U937 cells. Preincubation with caspase inhibitors blocked oridonin-triggered cleavage of AE, while substitution of Ala for Asp at residues 188 in ETO moiety of the fusion abrogated AE degradation. Furthermore, oridonin prolonged lifespan of C57 mice bearing truncated AE-expressing leukemic cells without suppression of bone marrow or reduction of body weight of animals, and exerted synergic effects while combined with cytosine arabinoside. Oridonin also inhibited tumor growth in nude mice inoculated with t(8;21)-harboring Kasumi-1 cells. These results suggest that oridonin may be a potential antileukemia agent that targets AE oncoprotein at residue D188 with low adverse effect, and may be helpful for the treatment of patients with t(8;21) AML.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2007
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 106, No. 11 ( 2005-11-16), p. 4335-4335
    Abstract: The NUP98 gene has been reported to be fused with at least 17 partner genes in leukemia with 11p15 translocation. An adult patient with de novo acute myeloid/T lymphocytic leukemia harboring t(3;11)(q29q13;p15) has been investigated to characterize the genes involved in that translocation. Through molecular cytogenetic analysis, we identified a fusion transcript between NUP98 gene and a novel partner gene named as NUP98 related gene (NRG) at 3q29. Further molecular analysis showed that exon 13 of NUP98 was fused in-frame to exon 10 of NRG. Moreover, the segment from 3q13 to 3q29 translocated at 11p15 had been inverted and accompanied by the deletion of the distal portion of breakpoint at chromosome 3q29. Interestingly, the NUP98-NRG protein showed nuclear and cytoplasmic distribution, a pattern different from that of wild type NUP98 or NRG. When assayed in a GAL 4 reporter system, the fusion gene showed an aberrant trans-regulatory activity. Transfection in HL-60 cells demonstrated that NUP98-NRG could promote cell proliferation, survival and arrest differentiation. Therefore, NUP98-NRG may exert transforming effects by interfering with the cellular mechanism of transcriptional regulation. Our data provide thus new evidence that NUP98-related molecular abnormality is a recurrent genetic event in leukemogenesis.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 136, No. 5 ( 2020-07-30), p. 553-571
    Abstract: The connections between energy metabolism and stemness of hematopoietic stem cells (HSCs) at different developmental stages remain largely unknown. We generated a transgenic mouse line for the genetically encoded NADH/NAD+ sensor (SoNar) and demonstrate that there are 3 distinct fetal liver hematopoietic cell populations according to the ratios of SoNar fluorescence. SoNar-low cells had an enhanced level of mitochondrial respiration but a glycolytic level similar to that of SoNar-high cells. Interestingly, 10% of SoNar-low cells were enriched for 65% of total immunophenotypic fetal liver HSCs (FL-HSCs) and contained approximately fivefold more functional HSCs than their SoNar-high counterparts. SoNar was able to monitor sensitively the dynamic changes of energy metabolism in HSCs both in vitro and in vivo. Mechanistically, STAT3 transactivated MDH1 to sustain the malate-aspartate NADH shuttle activity and HSC self-renewal and differentiation. We reveal an unexpected metabolic program of FL-HSCs and provide a powerful genetic tool for metabolic studies of HSCs or other types of stem cells.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 1663-1663
    Abstract: Natural-killer/T cell lymphoma (NKTCL) is a malignant proliferation of CD56+/cytoCD3+ lymphocytes and constitutes a heterogeneous group of aggressive lymphoma prevalent in Asian and South American populations. NKTCL represents a distinct clinicopathologic entity of non-Hodgkin’s lymphoma, characterized by male predominance, strong association with Epstein-Barr virus (EBV) infection, prominent tissue necrosis and aggressive clinical course. However, molecular pathogenesis of NKTCL remains largely elusive. Here we identified somatic mutations by whole-exome sequencing in 25 NKTCL patients and extended validation through targeted sequencing in an additional 80 cases. Functional experiments including RNA unwinding test, colony forming assay, cell proliferation assay and gene expression profiling were also performed. Overall, 50.5% of NKTCL patients displayed somatic mutations of RNA helicase family, tumor suppressors (TP53 and MGA), and/or epigenetic modifiers (MLL2, ARID1A, EP300 and ASXL3). Recurrent mutations were most frequently discovered in RNA helicase gene DDX3X (21/105 cases, 20.0%). Mutations of DDX3X were seldom overlapped with those of TP53. Functionally, DDX3X mutants exhibited reduced RNA unwinding activity and enhanced cell proliferation. Similar stimulatory effect on cell proliferation was observed in cells transfected with specific siRNA targeting DDX3X. Gene expression profiling revealed an association of DDX3X mutations with activation of NF-kB and MAPK pathways. The clinical follow-up data showed that DDX3X-mutated patients presented a poor prognosis. Our work suggests the heterogeneity of gene mutational spectrum of NKTCL and provides a potential therapeutic target for relevant cases. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 140, No. 15 ( 2022-10-13), p. 1686-1701
    Abstract: Hematopoietic stem cells (HSCs) have reduced capacities to properly maintain and replenish the hematopoietic system during myelosuppressive injury or aging. Expanding and rejuvenating HSCs for therapeutic purposes has been a long-sought goal with limited progress. Here, we show that the enzyme Sphk2 (sphingosine kinase 2), which generates the lipid metabolite sphingosine-1-phosphate, is highly expressed in HSCs. The deletion of Sphk2 markedly promotes self-renewal and increases the regenerative potential of HSCs. More importantly, Sphk2 deletion globally preserves the young HSC gene expression pattern, improves the function, and sustains the multilineage potential of HSCs during aging. Mechanistically, Sphk2 interacts with prolyl hydroxylase 2 and the Von Hippel-Lindau protein to facilitate HIF1α ubiquitination in the nucleus independent of the Sphk2 catalytic activity. Deletion of Sphk2 increases hypoxic responses by stabilizing the HIF1α protein to upregulate PDK3, a glycolysis checkpoint protein for HSC quiescence, which subsequently enhances the function of HSCs by improving their metabolic fitness; specifically, it enhances anaerobic glycolysis but suppresses mitochondrial oxidative phosphorylation and generation of reactive oxygen species. Overall, targeting Sphk2 to enhance the metabolic fitness of HSCs is a promising strategy to expand and rejuvenate functional HSCs.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 3531-3531
    Abstract: Background: Stage III follicular lymphoma (FL) is currently still considered incurable after RCHOP (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone) chemotherapy and rituximab maintenance. Radiotherapy plays a vital role in early-stage FL, but the value remains unclear in stage III FL. Here, we reported the results of invasive field radiotherapy (IFRT) combined with rituximab maintenance versus rituximab maintenance alone in patients with stage III FL who achieved complete remission (CR) or partial response (PR) after induction chemotherapy. Methods: From January 2015 and January 2020, patients aged 18-70 years with CR or PR after induction chemotherapy in stage III FL, grade 1, 2 or 3a and CD20 positive in immunohistochemical feature were randomly assigned (1:1) to receive IFRT combined rituximab maintenance or rituximab maintenance alone after induction chemotherapy in multicenter. The primary endpoint was progression-free survival at 5 years. This study is registered with Chinese ClinicalTrials.gov, number ChiCTR2000032550. Results: 63 patients were randomly assigned to IFRT combined rituximab maintenance (IFRT+R arm) and 66 patients to rituximab maintenance alone (R arm) after induction chemotherapy. The dose of IFRT was 30Gy. After a medium follow-up of 48 months (range 7-72 months), the 5-year progression free survival (PFS) were significantly improved in patients with IFRT +R, with 87.8% versus 67.1% (HR, 0.32; 95% CI, 0.14-0.72, P=0.006). Patients with IFRT +R also have a better overall survival (OS), OS was 96.6% versus 80% (HR, 0.28; 95% CI, 0.09-0.92, P=0.036). Thirty-six (57%) patients in IFRT+R arm and twenty-four (36%) patients in R arm suffered toxic effects (P=0.02). Grade 3 and 4 adverse events were recorded in 17 patients (27%) in IFRT+R arm and 11 (16%) in R arm (P=0.200). Conclusion: On the basis of rituximab maintenance, IFRT demonstrated promising efficacy and manageable toxicity in stage III FL, with longer PFS and OS compared with rituximab alone. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 77-77
    Abstract: Stress-induced angiogenesis enormously contributes to both normal development and pathogenesis of various diseases including cancer. Among many stress response pathways implicated in regulation of angiogenesis, the amino acid response (AAR) and the unfolded protein response (UPR) pathways are closely interconnected, as they converge on the common target, eIF2α, which is a key regulator of protein translation. Two kinases, namely Gcn2 (Eif2ak4) and Perk (Eif2ak3), are responsible for transducing signals from AAR and UPR, respectively, to phosphorylation of eIF2α. Even though numerous studies have been performed, this close interconnection between AAR and UPR makes it difficult to clearly distinguish different contributions of these two pathways in regulation of angiogenesis. In this study, we generated a zebrafish angiogenic model harboring a loss-of-function mutation of the threonyl-tRNA synthetase (tars) gene. Tars belongs to a family of evolutionarily conserved enzymes, aminoacyl-tRNA synthetases (aaRSs), which control the first step of protein translation through coupling specific amino acids with their cognate tRNAs. Deficiencies of several aaRSs in zebrafish have been shown to cause increased branching of blood vessels, and this angiogenic phenotype has roughly been explained by activation of AAR and UPR; however, it is unclear whether both AAR and UPR are required and to what extent they contribute to this process. To address this issue, we first performed RNA-seq analyses of Tars-mutated and control zebrafish embryos, as well as those with knockdown of either Gcn2 or Perk in both genotypes. We found that the AAR target genes are dramatically activated in the Tars-mutants, whereas the genes associated with the three UPR sub-pathways (i.e., Perk-, Ire1- and Atf6-mediated pathways) remain inactive, except for very few genes (e.g., Atf3, Atf4, Asns and Igfbp1) that are shared in both AAR and UPR, thus suggesting activation of AAR, but not UPR, in the Tars-mutants. In support of this notion, knockdown of the AAR-associated kinase Gcn2 in the Tars-mutants largely represses the activated genes, while the Perk knockdown shows very little effect. Nonetheless, in contrast to the apparently dispensable role of Perk in Tars-mutants, knockdown of Perk in control embryos leads to specific gene expression alterations, suggesting that Perk effectively functions in homeostatic states (i.e., controls), but, in the stress condition (i.e., Tars-mutants), its function is largely overwhelmed by activation of the Gcn2-mediated AAR. To validate these observations, we investigated the angiogenic phenotypes of the zebrafish models upon genetic and pharmacological interference with the AAR and UPR pathways. A transgenic zebrafish line, Tg(flk1:EGFP), was crossed with the Tars-mutants to visualize angiogenesis in vivo. We observed increased branching of blood vessels in the Tars-mutants, which is rescued by tars mRNA but not an enzymatically dead version. Importantly, knockdown of Gcn2 in the Tars-mutants rescues this phenotype. In contrast, knockdown of Perk, or knockdown of two other known eIF2α kinases, Hri (Eif2ak1) or Pkr (Eif2ak2), shows no effect. Furthermore, knockdown of either one of two major factors downstream to eIF2α, namely Atf4 and Vegfα, or inhibition of Vegf receptor with the drug SU5416, also rescue the phenotype. Thus, these results confirm that AAR, but not UPR, is required for the Tars-deficiency-induced angiogenesis. Taken together, this study demonstrates that, despite being closely interconnected and even sharing a common downstream target, the Gcn2-mediated AAR and the Perk-mediated UPR can be activated independently in different conditions and differentially regulate cellular functions such as angiogenesis. This notion reflects the specificity and efficiency of multiple stress response pathways that are evolved integrally to benefit the organism by ensuring sensing and responding precisely to different types of stresses. This study also provides an example of combining systematic gene expression profiling and phenotypic validations to distinguish activities of such interconnected pathways. Further clarification of the mechanisms shall advance our understanding of how the organisms respond to diverse stresses and how the abnormalities in these regulatory machineries cause cellular stress-related diseases such as cancer, diabetes and immune disorders. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...