GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (5)
  • Oxford University Press (OUP)  (5)
Material
  • Online Resource  (5)
Publisher
  • Oxford University Press (OUP)  (5)
Language
Years
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Regenerative Biomaterials Vol. 7, No. 1 ( 2020-02-01), p. 77-90
    In: Regenerative Biomaterials, Oxford University Press (OUP), Vol. 7, No. 1 ( 2020-02-01), p. 77-90
    Abstract: Based on our previous study, the utilization of an ultraviolet light photo-cross-linkable hyaluronic acid (HA) hydrogel integrated with a small molecule kartogenin-encapsulated nanoparticles obtained good reconstruction of osteochondral defects in a rabbit model, indicating the superiority of injectable hydrogel-based scaffolds in cartilage tissue engineering. Platelet-rich plasma (PRP), rich in various growth factors, proteins and cytokines, is considered to facilitate cartilage healing by stimulating cell proliferation and inducing chondrogenesis in cartilage defect site. The aim of this study was to test the therapeutic feasibility of autologous PRP combined with injectable HA hydrogel on cartilage repair. The focal cartilage defects with different critical sizes in the medial femoral condyle of a porcine model were used. At 6 months, the minipigs were sacrificed for assessment of macroscopic appearance, magnetic resonance imaging, micro-computed tomography, histology staining and biomechanics. The HA hydrogel combined with PRP-treated group showed more hyaline-like cartilage exhibited by macroscopic appearance and histological staining in terms of extracellular matrix and type II collagen without formation of hypertrophic cartilage, indicating its capacity to improve cartilage healing in the minipig model evaluated at 6 months, with full-thickness cartilage defect of 8.5 mm diameter and osteochondral defect of 6.5 mm diameter, 5 mm depth exhibiting apparent regeneration.
    Type of Medium: Online Resource
    ISSN: 2056-3418 , 2056-3426
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2799042-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Antibody Therapeutics, Oxford University Press (OUP), Vol. 5, No. 2 ( 2022-04-13), p. 138-149
    Abstract: Multiple myeloma (MM) is the second most common hematological malignancy. It has emerged as one of the next possible hematological diseases amenable to immunotherapy. B-cell maturation antigen (BCMA), a member of the tumor necrosis factor receptor superfamily, is highly expressed in MM cells and is one target with the most potential for developing MM-targeting immunotherapy. Other than the FDA-approved BCMA-targeting CAR T-cell therapy, such as Abecma and CARVYKTI, T cell-engaging multi-specific antibody is another promising therapeutic modality for BCMA-targeting MM treatment. We develop a T-cell redirecting BCMA-targeting bispecific antibody (bsAb) and evaluate its anti-MM activity. Methods We first generated several clones of mouse anti-human BCMA monoclonal antibodies using DNA immunization. One of the anti-BCMA antibodies was then used to design and produce a T cell-redirecting BCMA × CD3 bsAb in CHO cells. Finally, we examined the effect of the bsAb on MM cell growth both in vitro and in vivo. Results The BCMA × CD3 bsAb was designed in a FabscFv format and produced in CHO cells with good yield and purity. Moreover, the bsAb can trigger robust T cell proliferation and activation and induce efficient T cell-mediated MM cell killing in vitro. Using a MM xenograft mouse model, we demonstrate that the bsAb can effectively suppress MM cell growth in vivo. Conclusions Our results suggest that the BCMA × CD3 bsAb in the FabscFv format can efficiently inhibit MM cell growth and have promising potential to be developed into a therapeutic antibody drug for the treatment of MM.
    Type of Medium: Online Resource
    ISSN: 2516-4236
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 3031893-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Horticulture Research, Oxford University Press (OUP), Vol. 10, No. 6 ( 2023-06-04)
    Abstract: An ancient hexaploidization event in the most but not all Asteraceae plants, may have been responsible for shaping the genomes of many horticultural, ornamental, and medicinal plants that promoting the prosperity of the largest angiosperm family on the earth. However, the duplication process of this hexaploidy, as well as the genomic and phenotypic diversity of extant Asteraceae plants caused by paleogenome reorganization, are still poorly understood. We analyzed 11 genomes from 10 genera in Asteraceae, and redated the Asteraceae common hexaploidization (ACH) event ~70.7–78.6 million years ago (Mya) and the Asteroideae specific tetraploidization (AST) event ~41.6–46.2 Mya. Moreover, we identified the genomic homologies generated from the ACH, AST and speciation events, and constructed a multiple genome alignment framework for Asteraceae. Subsequently, we revealed biased fractionations between the paleopolyploidization produced subgenomes, suggesting the ACH and AST both are allopolyplodization events. Interestingly, the paleochromosome reshuffling traces provided clear evidence for the two-step duplications of ACH event in Asteraceae. Furthermore, we reconstructed ancestral Asteraceae karyotype (AAK) that has 9 paleochromosomes, and revealed a highly flexible reshuffling of Asteraceae paleogenome. Of specific significance, we explored the genetic diversity of Heat Shock Transcription Factors (Hsfs) associated with recursive whole-genome polyploidizations, gene duplications, and paleogenome reshuffling, and revealed that the expansion of Hsfs gene families enable heat shock plasticity during the genome evolution of Asteraceae. Our study provides insights on polyploidy and paleogenome remodeling for the successful establishment of Asteraceae, and is helpful for further communication and exploration of the diversification of plant families and phenotypes.
    Type of Medium: Online Resource
    ISSN: 2052-7276
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2781828-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Toxicological Sciences, Oxford University Press (OUP), Vol. 160, No. 1 ( 2017-11-01), p. 4-14
    Type of Medium: Online Resource
    ISSN: 1096-6080 , 1096-0929
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2017
    detail.hit.zdb_id: 1471974-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Toxicological Sciences, Oxford University Press (OUP), Vol. 183, No. 2 ( 2021-09-28), p. 352-362
    Abstract: Emphysema is one of the most important phenotypes for chronic obstructive pulmonary disease (COPD). Apoptosis in alveolar epithelial cells (AECs) causes the emphysematous alterations in the smokers and patients with COPD. Sirtuin 1 (SIRT1) is able to attenuate mitochondrial dysfunction, oxidative stress, and to modulate apoptosis. It has been shown that sodium tanshinone IIA sulfonate (STS), a water-soluble derivative of tanshinone IIA, protects against cigarette smoke (CS)-induced emphysema/COPD in mice. However, the mechanisms underlying these findings remain unclear. Here, we investigate whether and how STS attenuates AEC apoptosis via a SIRT1-dependent mechanism. We found that STS treatment decreased CS extract (CSE)-induced apoptosis in human alveolar epithelial A549 cells. STS reduced oxidative stress, improved mitochondrial function and mitochondrial membrane potential (ΔΨm), and restored mitochondrial dynamics-related protein expression. Moreover, STS promoted mitophagy, and increased oxidative phosphorylation protein levels (complexes I–IV) in CSE-stimulated A549 cells. The protective effects of STS were associated with SIRT1 upregulation, because SIRT1 inhibition by EX 527 significantly attenuated or abolished the ability of STS to reverse the CSE-induced mitochondrial damage, oxidative stress, and apoptosis in A549 cells. In conclusion, STS ameliorates CSE-induced AEC apoptosis by improving mitochondrial function and reducing oxidative stress via enhancing SIRT1 pathway. These findings provide novel mechanisms underlying the protection of STS against CS-induced COPD.
    Type of Medium: Online Resource
    ISSN: 1096-6080 , 1096-0929
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1471974-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...